Solveeit Logo

Question

Question: If a and b are roots of the equation ax<sup>2</sup> + bx + c = 0 then roots of the equation a(2x + 1...

If a and b are roots of the equation ax2 + bx + c = 0 then roots of the equation a(2x + 1)2 – b(2x + 1)(3 – x) + c(3 – x)2 = 0 are:

A

2α+1α3\frac{2\alpha + 1}{\alpha –3},2β+1β3\frac{2\beta + 1}{\beta –3}

B

3α+1α2\frac{3\alpha + 1}{\alpha –2},3β+1β2\frac{3\beta + 1}{\beta –2}

C

2α1α2\frac{2\alpha –1}{\alpha –2},2β+1β2\frac{2\beta + 1}{\beta –2}

D

None of these

Answer

3α+1α2\frac{3\alpha + 1}{\alpha –2},3β+1β2\frac{3\beta + 1}{\beta –2}

Explanation

Solution

Sol. a(2x+1)2(x3)2\frac{(2x + 1)^{2}}{(x–3)^{2}} + b(2x+1)(x3)\frac{(2x + 1)}{(x–3)} + c = 0

Ž 2x+1x3\frac{2x + 1}{x–3} = a or 2x+1x3\frac{2x + 1}{x–3}= b

Ž 2x + 1 = ax – 3a

Ž x (a – 2) = 1 + 3a

Ž x = 1+3αα2\frac{1 + 3\alpha}{\alpha –2}, 1+3ββ2\frac{1 + 3\beta}{\beta –2}