Question
Mathematics Question on Trigonometric Functions
If a and b are positive numbers such that a>b, then the minimum value of $ a\sec \theta -b\tan \theta \left( 0
A
a2−b21
B
a2+b21
C
a2+b2
D
a2−b2
Answer
a2−b2
Explanation
Solution
Let y=asecθ−btanθ
⇒ dθdy=asecθtanθ−bsec2θ
Put dθdy=0⇒secθ(atanθ−bsecθ)=0
⇒ sinθ=ab (∵secθ=0) Now, dθ2d2y>0, at sinθ=ab
∴ Minimum value is
y=a.a2−b2a−b.a2−b2b
=a2−b2