Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If aa and bb are positive numbers such that a>b,a>b, then the minimum value of $ a\sec \theta -b\tan \theta \left( 0

A

1a2b2\frac{1}{\sqrt{{{a}^{2}}-{{b}^{2}}}}

B

1a2+b2\frac{1}{\sqrt{{{a}^{2}}+{{b}^{2}}}}

C

a2+b2\sqrt{{{a}^{2}}+{{b}^{2}}}

D

a2b2\sqrt{{{a}^{2}}-{{b}^{2}}}

Answer

a2b2\sqrt{{{a}^{2}}-{{b}^{2}}}

Explanation

Solution

Let y=asecθbtanθy=a\sec \theta -b\tan \theta
\Rightarrow dydθ=asecθtanθbsec2θ\frac{dy}{d\theta }=a\sec \theta \tan \theta -b{{\sec }^{2}}\theta
Put dydθ=0secθ(atanθbsecθ)=0\frac{dy}{d\theta }=0\Rightarrow \sec \theta (a\tan \theta -b\sec \theta )=0
\Rightarrow sinθ=ba\sin \theta =\frac{b}{a} (secθ0)(\because \sec \theta \ne 0) Now, d2ydθ2>0,\frac{{{d}^{2}}y}{d{{\theta }^{2}}}>0, at sinθ=ba\sin \theta =\frac{b}{a}
\therefore Minimum value is
y=a.aa2b2b.ba2b2y=a.\frac{a}{\sqrt{{{a}^{2}}-{{b}^{2}}}}-b.\frac{b}{\sqrt{{{a}^{2}}-{{b}^{2}}}}
=a2b2=\sqrt{{{a}^{2}}-{{b}^{2}}}