Solveeit Logo

Question

Mathematics Question on Probability

If AA and BB are mutually exclusive events and if p(B)=13,p(AB)=1321,p(B)=\frac{1}{3},p(A\cup B)=\frac{13}{21}, then P(A)P(A) is equal to

A

17\frac{1}{7}

B

47\frac{4}{7}

C

27\frac{2}{7}

D

57\frac{5}{7}

Answer

27\frac{2}{7}

Explanation

Solution

We have p(B)=13,p(AB)=1321p(B)=\frac{1}{3},p(A\cup B)=\frac{13}{21}
For mutually exclusive events A and B, we get p(AB)=p(A)+p(B)p(A\cup B)=p(A)+p(B)
\Rightarrow p(A)=p(AB)p(B)p(A)=p(A\cup B)-p(B)
=132113=\frac{13}{21}-\frac{1}{3}
=13721=621=27=\frac{13-7}{21}=\frac{6}{21}=\frac{2}{7}
\therefore p(A)=27p(A)=\frac{2}{7}