Solveeit Logo

Question

Mathematics Question on Matrices

If A A and BB are matrices and B=ABA1B = ABA^{-1} then the value of (A+B)(AB)(A + B) (A - B) is

A

A2+B2A^2 + B^2

B

A2B2A^2 - B^2

C

A+BA + B

D

ABA - B

Answer

A2B2A^2 - B^2

Explanation

Solution

B=ABA1B = ABA^{-1} (Given) But B=BAAA B = BAA^{-A} ABA1=BAA1AB=BA \therefore \, \, ABA^{-1} = BAA^{-1} \, \, \Rightarrow \, \, AB = BA Now (A+B)(AB)=A2AB+BAB2(A + B) (A - B) = A^2 - AB + BA - B^2 =A2AB+ABB2[AB=BA]= A^2 - AB + AB - B^2 \, \, \, [ \therefore \, \, AB = BA] =A2B2 = A^2 - B^2