Solveeit Logo

Question

Question: If \(A\) and \(B\) are invertible matrices of same order, then prove that \({\left( {AB} \right)^{ -...

If AA and BB are invertible matrices of same order, then prove that (AB)1=B1A1{\left( {AB} \right)^{ - 1}} = {B^{ - 1}}{A^{ - 1}}.

Explanation

Solution

If AA is a non-singular matrix, there is an existence of a matrix A1{A^{ - 1}}of same order, which is called the inverse matrix ofAA such that it satisfies the property AA1=A1A=IA{A^{ - 1}} = {A^{ - 1}}A = I, where II is the identity matrix.

Complete step by step solution:
From the definition of inverse of a matrix AA, we have AA1=IA{A^{ - 1}} = I.
Since AA and BB are invertible matrices of the same order.
Therefore, apply the definition ofA1{A^{ - 1}} to the matrix(AB)\left( {AB} \right);
(AB)(AB)1=I\left( {AB} \right){\left( {AB} \right)^{ - 1}} = I
A1(AB)(AB)1=A1I\Rightarrow {A^{ - 1}}\left( {AB} \right){\left( {AB} \right)^{ - 1}} = {A^{ - 1}}I (Pre multiplying both sides by A1{A^{ - 1}})
(A1A)B(AB)1=A1\Rightarrow \left( {{A^{ - 1}}A} \right)B{\left( {AB} \right)^{ - 1}} = {A^{ - 1}} (Since A1I=A1{A^{ - 1}}I = {A^{ - 1}})
IB(AB)1=A1\Rightarrow IB{\left( {AB} \right)^{ - 1}} = {A^{ - 1}} (Since A1A=I{A^{ - 1}}A = I)
B(AB)1=A1\Rightarrow B{\left( {AB} \right)^{ - 1}} = {A^{ - 1}}
B1B(AB)1=B1A1\Rightarrow {B^{ - 1}}B{\left( {AB} \right)^{ - 1}} = {B^{ - 1}}{A^{ - 1}} (Pre multiplying both sides by B1{B^{ - 1}})
I(AB)1=B1A1\Rightarrow I{\left( {AB} \right)^{ - 1}} = {B^{ - 1}}{A^{ - 1}} (Since B1B=I{B^{ - 1}}B = I)
(AB)1=B1A1\Rightarrow {\left( {AB} \right)^{ - 1}} = {B^{ - 1}}{A^{ - 1}}

Note:
(1) The inverse of a matrix is defined only for a square matrix, whose order is m×mm \times m.
(2) The inverse of a matrix is defined only for a non-singular matrix, whose determinant value does not equal to zero.