Solveeit Logo

Question

Question: If A and B are independent events, then which of the following statements are correct? [a] A and B...

If A and B are independent events, then which of the following statements are correct?
[a] A and B are mutually exclusive
[b] A and B’ are independent events
[c] A’ and B’ are independent events
[d] P(A/B)+P(!!!! /B)=1\text{P}\left( \text{A/B} \right)+\text{P}\left( \text{A }\\!\\!'\\!\\!\text{ /B} \right)=1

Explanation

Solution

Hint : Two events are said to be independent if the probability of occurrence of one event is not affected by the occurrence or non-occurrence of the other event, i.e. if A and B are independent events then P(A/B) = P(A). Using this definition of the independent events verify which of the above-given statements are always true.

Complete step by step solution :
We have A and B are independent events,
Hence P(A/B) = P(A)
Hence P(AB)P(B)=P(A)\dfrac{\text{P}\left( \text{A}\bigcap \text{B} \right)}{\text{P}\left( \text{B} \right)}=\text{P}\left( \text{A} \right)
Multiplying both sides by P(B), we get
P(AB)=P(A)P(B)\text{P}\left( \text{A}\bigcap \text{B} \right)=\text{P}\left( \text{A} \right)\text{P}\left( \text{B} \right)
Two events A and B are said to be mutually exclusive if the sets A and B are disjoint.
Consider two events A and B such that A has non-zero probability and B = S.
Since AS\text{A}\subset \text{S}, we have AB=Aϕ\text{A}\bigcap \text{B=A}\ne \phi . Hence the events are not mutually exclusive.
However, P(AB)=P(A)\text{P}\left( \text{A}\bigcap \text{B} \right)=\text{P}\left( \text{A} \right) and P(A)P(B)=P(A)\text{P}\left( \text{A} \right)\text{P}\left( \text{B} \right)=\text{P}\left( \text{A} \right).
Hence the events are independent but not mutually exclusive. Hence option [a] is incorrect.
Now if A and B are independent then, P(AB)=P(A)P(B)\text{P}\left( \text{A}\bigcap \text{B} \right)=\text{P}\left( \text{A} \right)\text{P}\left( \text{B} \right)
Now we know that A=A(B!!!! )=(AB)(A!!!! )\text{A=A}\bigcap \left( \text{B}\bigcup \text{B }\\!\\!'\\!\\!\text{ } \right)=\left( \text{A}\bigcap \text{B} \right)\bigcup \left( \text{A}\bigcap \text{B }\\!\\!'\\!\\!\text{ } \right)
Hence P(A)=P((AB)(A!!!! ))\text{P}\left( \text{A} \right)=\text{P}\left( \left( \text{A}\bigcap \text{B} \right)\bigcup \left( \text{A}\bigcap \text{B }\\!\\!'\\!\\!\text{ } \right) \right)
Since the events (AB)\left( \text{A}\bigcap \text{B} \right) and (A!!!! )\left( \text{A}\bigcap \text{B }\\!\\!'\\!\\!\text{ } \right) are disjoint, these events are mutually exclusive
Hence P(A)=P((AB)(A!!!! ))=P(AB)+P(A!!!! )\text{P}\left( \text{A} \right)\text{=P}\left( \left( \text{A}\bigcap \text{B} \right)\bigcup \left( \text{A}\bigcap \text{B }\\!\\!'\\!\\!\text{ } \right) \right)=\text{P}\left( \text{A}\bigcap \text{B} \right)+\text{P}\left( \text{A}\bigcap \text{B }\\!\\!'\\!\\!\text{ } \right)
Hence, we have
P(A)=P(A)P(B)+P(A!!!! ) P(A!!!! )=P(A)(1P(B)) \begin{aligned} & \text{P}\left( \text{A} \right)=\text{P}\left( \text{A} \right)\text{P}\left( \text{B} \right)+\text{P}\left( \text{A}\bigcap \text{B }\\!\\!'\\!\\!\text{ } \right) \\\ & \Rightarrow \text{P}\left( \text{A}\bigcap \text{B }\\!\\!'\\!\\!\text{ } \right)=\text{P}\left( \text{A} \right)\left( 1-\text{P}\left( \text{B} \right) \right) \\\ \end{aligned}
We know that P(B’) = 1-P(B)
Hence we have P(A!!!! )=P(A)P(!!!! )\text{P}\left( \text{A}\bigcap \text{B }\\!\\!'\\!\\!\text{ } \right)=\text{P}\left( \text{A} \right)\text{P}\left( \text{B }\\!\\!'\\!\\!\text{ } \right)
Hence the events A and B’ are independent,
Since A and B’ are independent, we have A’ and B’ are also independent.
Hence options [b] and [c] are correct.
Now we know that P(A/B)=P(AB)P(B)\text{P}\left( \text{A/B} \right)=\dfrac{\text{P}\left( \text{A}\bigcap \text{B} \right)}{\text{P}\left( \text{B} \right)}
Hence, we have
P(A/B)+P(!!!! /B)=P(AB)P(B)+P(!!!! B)P(B)=P(AB)+P(!!!! B)P(B)\text{P}\left( \text{A/B} \right)+\text{P}\left( \text{A }\\!\\!'\\!\\!\text{ /B} \right)=\dfrac{\text{P}\left( \text{A}\bigcap \text{B} \right)}{\text{P}\left( \text{B} \right)}+\dfrac{\text{P}\left( \text{A }\\!\\!'\\!\\!\text{ }\bigcap \text{B} \right)}{\text{P}\left( \text{B} \right)}=\dfrac{\text{P}\left( \text{A}\bigcap \text{B} \right)+\text{P}\left( \text{A }\\!\\!'\\!\\!\text{ }\bigcap \text{B} \right)}{\text{P}\left( \text{B} \right)}
Since AB\text{A}\bigcap \text{B} and !!!! B\text{A }\\!\\!'\\!\\!\text{ }\bigcap \text{B} are mutually exclusive events, we have
P(AB)+P(!!!! B)=P((AB)(!!!! B))=P((A!!!! )B)=P(B)\text{P}\left( \text{A}\bigcap \text{B} \right)+\text{P}\left( \text{A }\\!\\!'\\!\\!\text{ }\bigcap \text{B} \right)=\text{P}\left( \left( \text{A}\bigcap \text{B} \right)\bigcup \left( \text{A }\\!\\!'\\!\\!\text{ }\bigcap \text{B} \right) \right)=\text{P}\left( \left( \text{A}\bigcup \text{A }\\!\\!'\\!\\!\text{ } \right)\bigcap \text{B} \right)=\text{P}\left( \text{B} \right)
Hence, we have
P(A/B)+P(!!!! /B)=P(B)P(B)=1\text{P}\left( \text{A/B} \right)+\text{P}\left( \text{A }\\!\\!'\\!\\!\text{ /B} \right)=\dfrac{\text{P}\left( \text{B} \right)}{\text{P}\left( \text{B} \right)}=1
Hence option[d] is correct.
Hence options [b] , [c] and [d] are correct.

Note : [1] Remember the above results. These results are often used in probability.
[2] A rather easier way to prove the above statement is as follows:
A and B’ will be independent if
P(B/A)=P(B)P\left( B'/A \right)=P\left( B' \right)
We know that if ABA\subset B, then P(BA)=P(B)P(A)P\left( B-A \right)=P\left( B \right)-P\left( A \right)
Now, we have
P(B/A)=P(BA)P(A)=P((SB)A)P(A)=P(SABA)P(A)P\left( B'/A \right)=\dfrac{P\left( B'\bigcap A \right)}{P\left( A \right)}=\dfrac{P\left( \left( S-B \right)\bigcap A \right)}{P\left( A \right)}=\dfrac{P\left( S\bigcap A-B\bigcap A \right)}{P\left( A \right)}
Now since BASAB\bigcap A\subset S\bigcap A, we have
P(B/A)=P(SA)P(BA)P(A)=P(A)P(A)P(B)P(A)=1P(B)=P(B)P\left( B'/A \right)=\dfrac{P\left( S\bigcap A \right)-P\left( B\bigcap A \right)}{P\left( A \right)}=\dfrac{P\left( A \right)-P\left( A \right)P\left( B \right)}{P\left( A \right)}=1-P\left( B \right)=P\left( B' \right)
Hence A and B’ are independent events.