Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

If AA and BB are foot of perpendicular drawn from point Q(a,b,c)Q (a, b, c) to the planes yzyz and zxzx, then equation of plane through the points A,BA, B and OO is ___________

A

xa+ybzc=0\frac{x}{a}+\frac{y}{b}-\frac{z}{c}=0

B

xayb+zc=0\frac{x}{a}-\frac{y}{b} + \frac{z}{c}=0

C

xaybzc=0\frac{x}{a} - \frac{y}{b} - \frac{z}{c}=0

D

xa+yb+zc=0\frac{x}{a} + \frac{y}{b} + \frac{z}{c}=0

Answer

xa+ybzc=0\frac{x}{a}+\frac{y}{b}-\frac{z}{c}=0

Explanation

Solution

The foot of perpendicular from point Q(a,b,c)Q(a, b, c) to the yzyz plane is A(0,b,c)A(0, b, c) and the foot of perpendicular from point QQ to the zxzx plane in B(a,0,c)B(a, 0, c)
Let the equation of plane passing through the point (0,0,0)(0,0,0) be
Ax+By+Cz=0(i)Ax+By+Cz=0\, \dots(i)
Also it is paring through the point A(0,b,c)A(0, b, c) and B(a,0,c)B(a, 0, c)
0+Bb+Cc=0\therefore 0+Bb+Cc=0
and Aa+0+Cc=0Aa+0+Cc =0
Cc=Bb\Rightarrow Cc=Bb
and Cc=AaCc=-Aa
Aa=Bb=Cc=k\therefore -A a =-B b=C c=k
A=ka,B=kb\Rightarrow A=-\frac{k}{a}, B=-\frac{k}{b}
and C=kcC =\frac{k}{c}
From E (i), kaxkby+kcz=0-\frac{k}{a} x-\frac{k}{b} y+\frac{k}{c} z=0
xayb+zc=0\Rightarrow -\frac{x}{a}-\frac{y}{b}+\frac{z}{c}=0 or xa+ybzc=0\frac{x}{a}+\frac{y}{b}-\frac{z}{c}=0