Solveeit Logo

Question

Mathematics Question on Sets

If AA and BB are finite sets and , AB{A \subset B} then

A

n(AB)=n(A)n (A \cup B)\, =\, n(A)

B

n(AB)=n(B)n (A \cap B)\, = \,n(B)

C

n(AB)=n(B)n (A \cup B)\, =\, n(B)

D

n(AB)=ϕn (A \cap B) \,=\, \phi

Answer

n(AB)=n(B)n (A \cup B)\, =\, n(B)

Explanation

Solution

We have, ABA \subset B
AB=An(AB)=n(A)\therefore A \cap B=A \Rightarrow n(A \cap B)=n(A) \dots(i)
Again, we know that
n(AB)=n(A)+n(B)n(AB)n(A \cup B)=n(A)+n(B)-n(A \cap B)
n(AB)=n(A)+n(B)n(A)\Rightarrow n(A \cup B)=n(A)+n(B)-n(A) [from E (i)]
n(AB)=n(B)\Rightarrow n(A \cup B)=n(B)