Solveeit Logo

Question

Mathematics Question on Binomial Theorem for Positive Integral Indices

If a and b are distinct integers, prove that a - b is a factor of anbna^n - b^n , whenever n is a positive integer.
[Hint: writean=(ab+b)n a ^n = (a - b + b)^n and expand]

Answer

In order to prove that (a-b) is a factor of (anbn)(a^n - b^n), it has to be proved that anbn=k(anbn)a^n - b^n= k (a^n - b^n), where k is some natural number
It can be written that, a= a - b + b
an(ab+b)n=[(ab)+b]n∴ a^n (a-b+b)^n =[(a-b)+b]^n
=C0n(ab)n+C1n(ab)n1b+...+Cn1n(ab)bn1+Cnnbn= C_0^n (a-b)^n +C_1^n (a-b)^{n-1} b+...+ C_{n-1}^n(a-b)b^{n-1} + C_n^n b^n
=(ab)n+c1n(ab)n1b+...+Cn1n(ab)bn1+bn=(a-b)^n +c_1^n (a-b)^{n-1} b+...+ C_{n-1}^n (a - b) b^{n-1}+b^n
anbn=(ab)[(ab)n1+C1n(ab)n2b+...+Cn1nbn1]⇒ a^n − b^n = (a−b)[(a−b)^{n-1} + C_1^n (a - b)^{n-2} b + ...+ C_{n-1}^n\,b^{n-1}]
anbn=k(ab)⇒a^n-b^n= k(a-b)
where, k =[(ab)n1+C1n(ab)n2b+...+Cn1nbn1] [(a − b)^{n-1} + C_1^n (a - b)^{n-2} b+...+C_{n-1}^n\,b^{n-1}] is a natural number
This shows that (a - b) is a factor of (anbn)(a^n - b^n), where n is a positive integer