Solveeit Logo

Question

Question: If α and β are different complex numbers with \(\left| \beta \right| = 1\), then find \(\left| {\dfr...

If α and β are different complex numbers with β=1\left| \beta \right| = 1, then find βα1αβ\left| {\dfrac{{\beta - \alpha }}{{1 - \overline \alpha \beta }}} \right|.

Explanation

Solution

Complex number can be written as z=a+ibz = a + ib. Where a, b are the real numbers.
Modulus of a complex number can be calculated as z=a2+b2\left| z \right| = \sqrt {{a^2} + {b^2}}
Conjugate of a complex number can be calculated as z=aib\overline z = a - ib

Complete step-by-step answer:
it is given that, β=1\left| \beta \right| = 1
We have to find the values of βα1αβ\left| {\dfrac{{\beta - \alpha }}{{1 - \overline \alpha \beta }}} \right|. Where α and β are complex numbers.
Step1
let α=a+ib\alpha = a + ib; a, b are the real numbers.
And β=p+iq\beta = p + iq ; p, q are the real numbers.
Step2
Modulus of α=α=a2+b2\alpha = \left| \alpha \right| = \sqrt {{a^2} + {b^2}}
Modulus of β=β=p2+q2=1\beta = \left| \beta \right| = \sqrt {{p^2} + {q^2}} = 1
p2+q2=1\to {p^2} + {q^2} = 1
Step 3
Conjugate of \alpha = \mathop {\alpha = a - ib}\limits^\\_
Step4
Now, βα1αβ\left| {\dfrac{{\beta - \alpha }}{{1 - \overline \alpha \beta }}} \right| = βα1αβ\dfrac{{\left| {\beta - \alpha } \right|}}{{\left| {1 - \overline {\alpha \beta } } \right|}}
On putting values of α&β\alpha \& \beta , we get
=(p+iq)(a+ib)1(aib)(p+iq)= \dfrac{{\left| {(p + iq) - (a + ib)} \right|}}{{\left| {1 - (a - ib)(p + iq)} \right|}}
=p+iqaib1apaqi+bpibq)= \dfrac{{\left| {p + iq - a - ib} \right|}}{{\left| {1 - ap - aqi + bpi - bq)} \right|}}
Separating Real and Imaginary parts,
=(pa)+(qb)i(1apbq)(aqbp)i= \dfrac{{\left| {(p - a) + (q - b)i} \right|}}{{\left| {(1 - ap - bq)(aq - bp)i} \right|}}
Using formula of modulus of complex number,
=(pa)2+(qb)2(iapbq)2+(aqbp)2= \dfrac{{\sqrt {{{(p - a)}^2} + {{(q - b)}^2}} }}{{\sqrt {{{(i - ap - bq)}^2} + {{(aq - bp)}^2}} }}
=p2+a22pa+q2+b22qb1+a2p2+b2q22ap2bq+2apqb+a2q2+b2q22aqbp= \dfrac{{\sqrt {{p^2} + {a^2} - 2pa + {q^2} + {b^2} - 2qb} }}{{\sqrt {1 + {a^2}{p^2} + {b^2}{q^2} - 2ap - 2bq + 2apqb + } {a^2}{q^2} + {b^2}{q^2} - 2aqbp}}
On combining quantities according to identities,
=p2+q2+b2+a22pa2qb1+a2(p2+q2)(p2+q2)b22ap2bq= \dfrac{{\sqrt {{p^2} + {q^2} + {b^2} + {a^2} - 2pa - 2qb} }}{{\sqrt {1 + {a^2}({p^2} + {q^2}) - ({p^2} + {q^2}){b^2} - 2ap - 2bq} }}
\Rightarrow [1+a2+b22pa2qb]12[1+a2+b22ap2bq]12=1 \dfrac{{{{\left[ {1 + {a^2} + {b^2} - 2pa - 2qb} \right]}^{\dfrac{1}{2}}}}}{{{{[1 + {a^2} + {b^2} - 2ap - 2bq]}^{\dfrac{1}{2}}}}} = 1

Note: In case of complex numbers , modulus and conjugate are the two of the main properties of complex numbers.
In step1; we have just assigned the general values of α and β .
In step 2; moduli of α and β have been calculated.
In step 3; conjugates of α are calculated.
In step 4; the values from step 1, 2& 3 are substituted.
The given values of β=1\left| \beta \right| = 1 Is also substituted.
Hence, the value of βα1αβ\left| {\dfrac{{\beta - \alpha }}{{1 - \overline \alpha \beta }}} \right| Is 1.
When α and β are complex numbers and β=1\left| \beta \right| = 1.