Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If α and β are different complex numbers with |β|=1, then find βα1αˉβ.| \frac{β-α}{1-\bar{α}β} |.

Answer

Let α=a+ib and β²=x+iy

It is given that, |β|=1

x2+y2=1∴\sqrt{x^2+y^2=1}

x2+y2=1....(i)⇒x^2+y^2=1....(i)

=βα1αˉβ=(xiy)(a+ib)1(aib)(x+iy)=|\frac{β-α}{1-\bar{α}β}|=|\frac{(x_iy)-(a+ib)}{1-(a-ib)(x+iy)}|

=(xa)+i(yb)1(ax+aiyibx+by)=|\frac{(x-a)+i(y-b)}{1-(ax+aiy-ibx+by)}|

=(xa)+i(yb)(1axby)+i(bxay)=|\frac{(x-a)+i(y-b)}{(1-ax-by)+i(bx-ay)}|

=(xa)+i(yb)(1axby)+i(bxay)=|\frac{(x-a)+i(y-b)}{(1-ax-by)+i(bx-ay)}| [z1z2=z1z2][|\frac{z_1}{z_2}|=|\frac{z_1}{z_2}|]

=(xa)2+i(yb)2(1axby)2+i(bxay)2=\sqrt\frac{(x-a)^2+i(y-b)^2}{(1-ax-by)^2+i(bx-ay)^2}

=x2+a22ax+y2+b22by1+a2x2+b2y2ax+2abxy2by+b2x2+a2y22abxy=\frac{\sqrt x^2+a^2-2ax+y^2+b^2-2by}{\sqrt 1+a^2x^2+b^2y^2-ax+2abxy-2by+b^2x^2+a^2y^2-2abxy}

(x2+y2)+a2+b22ax2by1+a2(x2+y2)+b2(y2+x2)2ax2by\frac{\sqrt (x^2+y^2)+a^2+b^2-2ax-2by}{\sqrt 1+a^2(x^2+y^2)+b^2(y^2+x^2)-2ax-2by}

=1+a2+b22ax2by1+a2+b22ax2by=\frac{\sqrt 1+a^2+b^2-2ax-2by}{\sqrt1+a^2+b^2-2ax-2by} [Using(1)][Using\,(1)]

βα1αˉβ=1∴|\frac{β-α}{1-\bar{α}β}|=1