Question
Mathematics Question on Complex Numbers and Quadratic Equations
If α and β are different complex numbers with |β|=1, then find ∣1−αˉββ−α∣.
Answer
Let α=a+ib and β²=x+iy
It is given that, |β|=1
∴x2+y2=1
⇒x2+y2=1....(i)
=∣1−αˉββ−α∣=∣1−(a−ib)(x+iy)(xiy)−(a+ib)∣
=∣1−(ax+aiy−ibx+by)(x−a)+i(y−b)∣
=∣(1−ax−by)+i(bx−ay)(x−a)+i(y−b)∣
=∣(1−ax−by)+i(bx−ay)(x−a)+i(y−b)∣ [∣z2z1∣=∣z2z1∣]
=(1−ax−by)2+i(bx−ay)2(x−a)2+i(y−b)2
=1+a2x2+b2y2−ax+2abxy−2by+b2x2+a2y2−2abxyx2+a2−2ax+y2+b2−2by
1+a2(x2+y2)+b2(y2+x2)−2ax−2by(x2+y2)+a2+b2−2ax−2by
=1+a2+b2−2ax−2by1+a2+b2−2ax−2by [Using(1)]
∴∣1−αˉββ−α∣=1