Solveeit Logo

Question

Mathematics Question on Sequence and series

If a a(0,π2),a \in \bigg(0,\frac{\pi}{2}\bigg), then x2+x+tan2ax2+x\sqrt {x^2+x} +\frac{\tan^2\, a}{\sqrt {x^2+x}} is always greater than or equal to

A

2tana2\, \tan\, a

B

1

C

2

D

sec2a\sec^2 a

Answer

2tana2\, \tan\, a

Explanation

Solution

Here, a(0,π2)tana>0a \in \, (0,\frac{\pi}{2}) \Rightarrow \tan\, a > 0
x2+x+tan2ax2+x2x2+x.tan2ax2+x\therefore \, \, \, \, \, \, \frac{\sqrt {x^2+x} +\frac{\tan^2\, a}{\sqrt {x^2+x}} }{2} \ge \sqrt{\sqrt {x^2+x} .\frac{\tan^2\, a}{\sqrt {x^2+x}} }
\hspace60mm [ using AMGM]AM \ge GM]
x2+x+tan2ax2+x2tana\Rightarrow \, \, \, \sqrt {x^2+x} +\frac{\tan^2\, a}{\sqrt {x^2+x}} \ge 2 \, \tan \, a

The correct option is(A): 2 tan a