Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If a=5,b=13,c=12a= 5, b = 13 , c = 12 in ΔABC\Delta ABC, then tanB4\tan \frac{B}{4} is

A

31\sqrt{3} - 1

B

3+1\sqrt{3} + 1

C

2+1\sqrt{2} + 1

D

21\sqrt{2} - 1

Answer

21\sqrt{2} - 1

Explanation

Solution

tanB4=sinB4cosB4\tan \frac{B}{4} = \frac{\sin \frac{B}{4}}{\cos \frac{B}{4}}
tanB4=2sinB4cosB42cosB4cosB4\tan \frac{B}{4} = \frac{2\sin \frac{B}{4} \cos \frac{B}{4}}{2\cos \frac{B}{4}\cos \frac{B}{4}}
=sinB21+cosB2=sin451+cos45(B=90)= \frac{\sin \frac{B}{2}}{1+ \cos \frac{B}{2}} = \frac{\sin 45^{\circ}}{1+\cos45^{\circ} } \, \, \, \, \, \, \, (\because \, \, \angle B = 90^{\circ})
=121+12=12+1=21= \frac{\frac{1}{\sqrt{2}}}{1+\frac{1}{\sqrt{2}}} = \frac{1}{\sqrt{2} +1}=\sqrt{2} -1