Solveeit Logo

Question

Question: If A = (5, 1, p), B = (1, q, p) and C = (1, -2, 3) are vertices of triangle and G = $\left(r, \frac{...

If A = (5, 1, p), B = (1, q, p) and C = (1, -2, 3) are vertices of triangle and G = (r,43,13)\left(r, \frac{-4}{3}, \frac{1}{3}\right) is its centroid, then the values of p, q, r are respectively

A
  • 1, 3, 7/3
B

-1, -3, 7/3

C

1, -3, 7/3

D

1, 3, 7/3

Answer

-1, -3, 7/3

Explanation

Solution

The centroid G of a triangle with vertices A(x1,y1,z1)A(x_1, y_1, z_1), B(x2,y2,z2)B(x_2, y_2, z_2), and C(x3,y3,z3)C(x_3, y_3, z_3) is given by:

G=(x1+x2+x33,y1+y2+y33,z1+z2+z33)G = \left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}, \frac{z_1+z_2+z_3}{3}\right)

Given: A=(5,1,p)A = (5, 1, p), B=(1,q,p)B = (1, q, p), C=(1,2,3)C = (1, -2, 3), and G=(r,43,13)G = \left(r, \frac{-4}{3}, \frac{1}{3}\right)

  1. x-coordinate:

    r=5+1+13=73r = \frac{5+1+1}{3} = \frac{7}{3}
  2. y-coordinate:

    1+q+(2)3=q13=43q1=4q=3\frac{1+q+(-2)}{3} = \frac{q-1}{3} = \frac{-4}{3} \Rightarrow q-1 = -4 \Rightarrow q = -3
  3. z-coordinate:

    p+p+33=2p+33=132p+3=12p=2p=1\frac{p+p+3}{3} = \frac{2p+3}{3} = \frac{1}{3} \Rightarrow 2p+3 = 1 \Rightarrow 2p = -2 \Rightarrow p = -1

Thus, p=1p = -1, q=3q = -3, and r=73r = \frac{7}{3}.