Solveeit Logo

Question

Question: If \(A = 3\widehat{i} + 4\widehat{j}\) and \(B = 7\widehat{i} + 24\widehat{j},\) the vector having t...

If A=3i^+4j^A = 3\widehat{i} + 4\widehat{j} and B=7i^+24j^,B = 7\widehat{i} + 24\widehat{j}, the vector having the same magnitude as B and parallel to A is

A

5i^+20j^5\widehat{i} + 20\widehat{j}

B

15i^+10j^15\widehat{i} + 10\widehat{j}

C

20i^+15j^20\widehat{i} + 15\widehat{j}

D

15i^+20j^15\widehat{i} + 20\widehat{j}

Answer

15i^+20j^15\widehat{i} + 20\widehat{j}

Explanation

Solution

B=72+(24)2|B| = \sqrt{7^{2} + (24)^{2}} =625= \sqrt{625} =25= 25

Unit vector in the direction of A will be

A^=3i^+4j^5\widehat{A} = \frac{3\widehat{i} + 4\widehat{j}}{5}

So required vector

=25(3i^+4j^5)25\left( \frac{3\widehat{i} + 4\widehat{j}}{5} \right) =15i^+20j^= 15\widehat{i} + 20\widehat{j}