Solveeit Logo

Question

Question: If \( A = {30^o} \) , verify that \( \cos 2a = {\cos ^2}A - {\sin ^2}A = 2{\cos ^2}A - 1 \)...

If A=30oA = {30^o} , verify that cos2a=cos2Asin2A=2cos2A1\cos 2a = {\cos ^2}A - {\sin ^2}A = 2{\cos ^2}A - 1

Explanation

Solution

Hint : In this question, we need to verify that the expression cos2a=cos2Asin2A=2cos2A1\cos 2a = {\cos ^2}A - {\sin ^2}A = 2{\cos ^2}A - 1 is true. For this, we will use the trigonometric identities by substitute the value of A in trigonometric functions.

Complete step by step solution:

Functionsinθ\sin \thetacosθ\cos \thetatanθ\tan \theta
0010
300{30^0}12\dfrac{1}{2}32\dfrac{{\sqrt 3 }}{2}13\dfrac{1}{{\sqrt 3 }}
450{45^0}12\dfrac{1}{{\sqrt 2 }}12\dfrac{1}{{\sqrt 2 }}1
600{60^0}32\dfrac{{\sqrt 3 }}{2}12\dfrac{1}{2}3\sqrt 3
900{90^0}10Indeterminate

In the given function cos2a=cos2Asin2A=2cos2A1\cos 2a = {\cos ^2}A - {\sin ^2}A = 2{\cos ^2}A - 1 Substitute the given value of A which is equal 30o{30^o}
We get cos2(30)=cos2(30)sin2(30)=2cos2(30)1\cos 2\left( {{{30}^ \circ }} \right) = \cos {}^2\left( {{{30}^ \circ }} \right) - {\sin ^2}\left( {{{30}^ \circ }} \right) = 2{\cos ^2}\left( {{{30}^ \circ }} \right) - 1
Now we can write this function as
cos(60)=(cos30)2(sin30)2=2(cos30)21\cos \left( {{{60}^ \circ }} \right) = {\left( {\cos {{30}^ \circ }} \right)^2} - {\left( {\sin {{30}^ \circ }} \right)^2} = 2{\left( {\cos {{30}^ \circ }} \right)^2} - 1
Now we will substitute the values of the function for their respective angles from the above given trigonometric table
12=(32)2(12)2=2(32)21\dfrac{1}{2} = {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^2} - {\left( {\dfrac{1}{2}} \right)^2} = 2{\left( {\dfrac{{\sqrt 3 }}{2}} \right)^2} - 1
By further solving this function

12=3414=2×341 12=24=321 12=12=322 12=12=12   \dfrac{1}{2} = \dfrac{3}{4} - \dfrac{1}{4} = 2 \times \dfrac{3}{4} - 1 \\\ \dfrac{1}{2} = \dfrac{2}{4} = \dfrac{3}{2} - 1 \\\ \dfrac{1}{2} = \dfrac{1}{2} = \dfrac{{3 - 2}}{2} \\\ \dfrac{1}{2} = \dfrac{1}{2} = \dfrac{1}{2} \;

Hence verified, left term, middle term and the right term of the function are equal.

Note : Write the value of the function in the relation for the given respective angles in cases of cosecθ{\text{cosec}}\theta ,secθ\sec \theta and cotθ\cot \theta , either inverse them or write their values, respectively. The trigonometric function is the function that relates the ratio of the length of two sides with the angles of the right-angled triangle widely used in navigation, oceanography, the theory of periodic functions, and projectiles.