Solveeit Logo

Question

Question: If \(A=30{}^\circ \) then prove that \(3A=4{{\cos }^{3}}A-3\cos A\)....

If A=30A=30{}^\circ then prove that 3A=4cos3A3cosA3A=4{{\cos }^{3}}A-3\cos A.

Explanation

Solution

Hint: We will first take the LHS of the given equation and substitute A=30A=30{}^\circ to find its value. Then we will take the right side of the given equation and then substitute A=30A=30{}^\circ to find its value and prove it to be equal to the left side.

Complete step-by-step answer:
Now, we have been given A=30A=30{}^\circ .
Now, we have to prove that 3A=4cos3A3cosA3A=4{{\cos }^{3}}A-3\cos A.
Now, we will take the left side of the equation and substitute the value of A=30A=30{}^\circ .
Now, in left side we have,
cos3A\cos 3A
Now, we will put A=30A=30{}^\circ . So, we have,
cos3×30 cos90 \begin{aligned} & \Rightarrow \cos 3\times 30{}^\circ \\\ & \Rightarrow \cos 90{}^\circ \\\ \end{aligned}
Now, we know that cos90=0\cos 90{}^\circ =0
cos90=0\Rightarrow \cos 90{}^\circ =0
Now, in right hand side we have,
4cos3A3cosA4{{\cos }^{3}}A-3\cos A
Now, we will substitute A=30A=30{}^\circ
4cos3(30)3cos(30)4{{\cos }^{3}}\left( 30{}^\circ \right)-3\cos \left( 30{}^\circ \right)
Now, we know that cos30=32\cos 30{}^\circ =\dfrac{\sqrt{3}}{2}.

& \Rightarrow 4{{\left( \dfrac{\sqrt{3}}{2} \right)}^{3}}-3\left( \dfrac{\sqrt{3}}{2} \right) \\\ & \Rightarrow 4\times \dfrac{3\sqrt{3}}{8}-\dfrac{3\sqrt{3}}{2} \\\ & \Rightarrow \dfrac{3\sqrt{3}}{2}-\dfrac{3\sqrt{3}}{2} \\\ & \Rightarrow 4{{\cos }^{3}}A-3\cos A=0 \\\ \end{aligned}$$ So, we have LHS = RHS if $A=30{}^\circ $. Hence, proved that $\cos 3A=4{{\cos }^{3}}A-3\cos A$ if $A=30{}^\circ $. Note: It is important to note the fact that to solve this question we have used trigonometric identity that, $$\begin{aligned} & \cos 30{}^\circ =\dfrac{\sqrt{3}}{2} \\\ & \cos 90{}^\circ =0 \\\ \end{aligned}$$ Also, to solve these type of questions it’s important to remember other trigonometric identities like, $$\begin{aligned} & \sin 30{}^\circ =\cos 60{}^\circ =\dfrac{1}{2} \\\ & \sin 0{}^\circ =\cos 90{}^\circ =0 \\\ & \sin 90{}^\circ =\cos 0{}^\circ =1 \\\ \end{aligned}$$