Solveeit Logo

Question

Question: If \({{A}_{3\times 3}}\) is a matrix such that \(\left| A \right|=a\) , \(B=\left( adjA \right)\) su...

If A3×3{{A}_{3\times 3}} is a matrix such that A=a\left| A \right|=a , B=(adjA)B=\left( adjA \right) such that B=b\left| B \right|=b . Find the value of (ab2+a2b+1)S25\dfrac{\left( a{{b}^{2}}+{{a}^{2}}b+1 \right)S}{25} where 12S=ab+a2b3+a3b5+............... up to \dfrac{1}{2}S=\dfrac{a}{b}+\dfrac{{{a}^{2}}}{{{b}^{3}}}+\dfrac{{{a}^{3}}}{{{b}^{5}}}+...............\text{ }up\text{ }to\text{ }\infty , and a=3a=3 .

Explanation

Solution

For solving this question we will use the adjA=A2\left| adjA \right|={{\left| A \right|}^{2}} formula from the matrix and determinants concept. After that, we will put the value of aa and bb in the expression of SS and then analyse it and calculate its value and then easily we will find the value of (ab2+a2b+1)S25\dfrac{\left( a{{b}^{2}}+{{a}^{2}}b+1 \right)S}{25}.

Complete step by step answer:
It is given that A3×3{{A}_{3\times 3}} is a matrix such that A=a=3\left| A \right|=a=3 , B=(adjA)B=\left( adjA \right) such that B=b\left| B \right|=b and 12S=ab+a2b3+a3b5+............... up to \dfrac{1}{2}S=\dfrac{a}{b}+\dfrac{{{a}^{2}}}{{{b}^{3}}}+\dfrac{{{a}^{3}}}{{{b}^{5}}}+...............\text{ }up\text{ }to\text{ }\infty . And we have to find the value of (ab2+a2b+1)S25\dfrac{\left( a{{b}^{2}}+{{a}^{2}}b+1 \right)S}{25} .
Now, we know that it AA is a 3×33\times 3 square matrix then, adjA=A2\left| adjA \right|={{\left| A \right|}^{2}} . So, as it is given that A=a=3\left| A \right|=a=3 and B=(adjA)B=\left( adjA \right) . Then,
B=(adjA) B=b=adjA=A2 b=a2 b=9.......................(1) \begin{aligned} & B=\left( adjA \right) \\\ & \Rightarrow \left| B \right|=b=\left| adjA \right|={{\left| A \right|}^{2}} \\\ & \Rightarrow b={{a}^{2}} \\\ & \Rightarrow b=9.......................\left( 1 \right) \\\ \end{aligned}
Now, as we have the value of both aa and bb . And 12S=ab+a2b3+a3b5+............... up to \dfrac{1}{2}S=\dfrac{a}{b}+\dfrac{{{a}^{2}}}{{{b}^{3}}}+\dfrac{{{a}^{3}}}{{{b}^{5}}}+...............\text{ }up\text{ }to\text{ }\infty . Then,
12S=ab+a2b3+a3b5+............... up to  12S=39+3293+3395+............... up to  S2=13+3236+33310+............... up to  S2=13+134+137+............... up to .......................(2) \begin{aligned} & \dfrac{1}{2}S=\dfrac{a}{b}+\dfrac{{{a}^{2}}}{{{b}^{3}}}+\dfrac{{{a}^{3}}}{{{b}^{5}}}+...............\text{ }up\text{ }to\text{ }\infty \\\ & \Rightarrow \dfrac{1}{2}S=\dfrac{3}{9}+\dfrac{{{3}^{2}}}{{{9}^{3}}}+\dfrac{{{3}^{3}}}{{{9}^{5}}}+...............\text{ }up\text{ }to\text{ }\infty \\\ & \Rightarrow \dfrac{S}{2}=\dfrac{1}{3}+\dfrac{{{3}^{2}}}{{{3}^{6}}}+\dfrac{{{3}^{3}}}{{{3}^{10}}}+...............\text{ }up\text{ }to\text{ }\infty \\\ & \Rightarrow \dfrac{S}{2}=\dfrac{1}{3}+\dfrac{1}{{{3}^{4}}}+\dfrac{1}{{{3}^{7}}}+...............\text{ }up\text{ }to\text{ }\infty .......................\left( 2 \right) \\\ \end{aligned}
Now, as the expression of S2\dfrac{S}{2} is an infinite G.P. with a common ratio of 133\dfrac{1}{{{3}^{3}}} so, first we will multiply the S2\dfrac{S}{2} by 133\dfrac{1}{{{3}^{3}}} . Then,
S2=13+134+137+............... up to  133×S2=134+137+1310............... up to ...........................(3) \begin{aligned} & \dfrac{S}{2}=\dfrac{1}{3}+\dfrac{1}{{{3}^{4}}}+\dfrac{1}{{{3}^{7}}}+...............\text{ }up\text{ }to\text{ }\infty \\\ & \Rightarrow \dfrac{1}{{{3}^{3}}}\times \dfrac{S}{2}=\dfrac{1}{{{3}^{4}}}+\dfrac{1}{{{3}^{7}}}+\dfrac{1}{{{3}^{10}}}...............\text{ }up\text{ }to\text{ }\infty ...........................\left( 3 \right) \\\ \end{aligned}
Now, subtract the equation (3) from the equation (2). Then,
S2133×S2=(13+134+137+............... up to )(134+137+1310+............... up to ) S2(1127)=13 S2×2627=13 S=913.........................(4) \begin{aligned} & \dfrac{S}{2}-\dfrac{1}{{{3}^{3}}}\times \dfrac{S}{2}=\left( \dfrac{1}{3}+\dfrac{1}{{{3}^{4}}}+\dfrac{1}{{{3}^{7}}}+...............\text{ }up\text{ }to\text{ }\infty \right)-\left( \dfrac{1}{{{3}^{4}}}+\dfrac{1}{{{3}^{7}}}+\dfrac{1}{{{3}^{10}}}+...............\text{ }up\text{ }to\text{ }\infty \right) \\\ & \Rightarrow \dfrac{S}{2}\left( 1-\dfrac{1}{27} \right)=\dfrac{1}{3} \\\ & \Rightarrow \dfrac{S}{2}\times \dfrac{26}{27}=\dfrac{1}{3} \\\ & \Rightarrow S=\dfrac{9}{13}.........................\left( 4 \right) \\\ \end{aligned}
Now, from equation (1) put b=9b=9 , from equation (4) S=913S=\dfrac{9}{13} and the given data put a=3a=3 in the (ab2+a2b+1)S25\dfrac{\left( a{{b}^{2}}+{{a}^{2}}b+1 \right)S}{25} and calculate its value. Then,
(ab2+a2b+1)S25 (3×81+9×3+1)25×913 (243+27+1)25×913 24393257.5046 \begin{aligned} & \dfrac{\left( a{{b}^{2}}+{{a}^{2}}b+1 \right)S}{25} \\\ & \Rightarrow \dfrac{\left( 3\times 81+9\times 3+1 \right)}{25}\times \dfrac{9}{13} \\\ & \Rightarrow \dfrac{\left( 243+27+1 \right)}{25}\times \dfrac{9}{13} \\\ & \Rightarrow \dfrac{2439}{325}\approx 7.5046 \\\ \end{aligned}
Now, from the above result, we can say that (ab2+a2b+1)S25=24393257.5046\dfrac{\left( a{{b}^{2}}+{{a}^{2}}b+1 \right)S}{25}=\dfrac{2439}{325}\approx 7.5046 .

Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to calculate the answer quickly. Moreover, the student should calculate the value of bb correctly and don’t confuse it with the value of A\left| A \right| or apply any lengthy method to find it. After that for the value of SS G.P. formation should be done correctly and we can apply the formula of summation of infinite G.P having common ratio less than one also to calculate SS .