Solveeit Logo

Question

Mathematics Question on Matrices

If [A]3×2[B]x×y=[C]3×1[A]_{3 \times 2} [B]_{x \times y} = [C]_{3 \times 1}, then xx and yy are:

A

x=1,y=3x = 1, y = 3

B

x=2,y=1x = 2, y = 1

C

x=3,y=3x = 3, y = 3

D

x=3,y=1x = 3, y = 1

Answer

x=2,y=1x = 2, y = 1

Explanation

Solution

Given the matrices:

[A]3×2,[B]x×y,[C]3×1.[A]_{3 \times 2}, \quad [B]_{x \times y}, \quad [C]_{3 \times 1}.

For matrix multiplication [A][B][A][B] to be defined, the number of columns of AA must equal the number of rows of BB, so:

x=2.x = 2.

The resulting product [A][B][A][B] will have dimensions 3×y3 \times y, which must match [C]3×1[C]_{3 \times 1}, so:

y=1.y = 1.

Thus:

x=2,y=1.x = 2, \quad y = 1.

The correct option is:

x=2,y=1.x = 2, \, y = 1.