Solveeit Logo

Question

Mathematics Question on Vector Algebra

If a=3,b=4,c=5a = 3, b = 4, c = 5 each one of a,ba ,b & cc is perpendicular to the sum of the remaining then a+b+c| a + b + c | is equal to

A

52\frac{5}{\sqrt{2}}

B

25\frac{2}{\sqrt{5}}

C

525 \sqrt{2}

D

5\sqrt{5}

Answer

525 \sqrt{2}

Explanation

Solution

We have, a=3,b=4,c=5| a |=3,| b |=4,| c |=5
and ab+bc+ca=0a \cdot b + b \cdot c + c \cdot a =0
a+b+c2=(a+b+c)(a+b+c)\Rightarrow| a + b + c |^{2}=( a + b + c ) \cdot( a + b + c )
a+b+c2=a2+b2+c2\Rightarrow| a + b + c |^{2}=| a |^{2}+| b |^{2}+| c |^{2}
+2(ab+bc+ca)+2( a \cdot b + b \cdot c + c \cdot a )
a+b+c2=(3)2+(4)2+(5)2+2(0)\Rightarrow| a + b + c |^{2}=(3)^{2}+(4)^{2}+(5)^{2}+2(0)
a+b+c2=9+16+25=50\Rightarrow| a + b + c |^{2}=9+16+25=50
a+b+c=50=52\therefore \quad| a + b + c |=\sqrt{50}=5 \sqrt{2}