Question
Mathematics Question on Quadrilaterals
If A(3,1,−1), B(35,37,31), C(2,2,1), and D(310,32,3−1) are the vertices of a quadrilateral ABCD, then its area is:
A
342
B
352
C
22
D
322
Answer
342
Explanation
Solution
The area of quadrilateral ABCD is given by:
Area=21∥BD×AC∥,
where:
BD=D−B,AC=C−A.
Calculate BD:
BD=(310−35)i^+(32−37)j^+(−31−31)k^.
Simplify:
BD=35i^−35j^−32k^.
Calculate AC:
AC=(2−3)i^+(2−1)j^+(1−(−1))k^.
Simplify:
AC=−i^+j^+2k^.
Now, compute BD×AC:
BD×AC=i^ 35 −1j^−351k^−322.
Expand:
BD×AC=i^((−5/3)(2)−(−5/3)(1))−j^((5/3)(2)−(−2/3)(1))+k^((5/3)(1)−(−5/3)(−1)).
Simplify:
BD×AC=i^(−10/3+5/3)−j^(10/3−2/3)+k^(5/3−5/3).
BD×AC=−35i^−38j^+0k^.
The magnitude is:
∥BD×AC∥=(−35)2+(−38)2.
∥BD×AC∥=925+964=989=389.
The area is:
Area=21⋅389=342.