Solveeit Logo

Question

Question: If A –2B = \(\begin{bmatrix} 1 & 5 \\ 3 & 7 \end{bmatrix}\) and 2A – 3B =\(\begin{bmatrix} - 2 & 5 ...

If A –2B = [1537]\begin{bmatrix} 1 & 5 \\ 3 & 7 \end{bmatrix} and 2A – 3B =$\begin{bmatrix}

  • 2 & 5 \ 0 & 7 \end{bmatrix}$, then matrix B is equal to–
A

$\begin{bmatrix}

  • 4 & - 5 \
  • 6 & - 7 \end{bmatrix}$
B

$\begin{bmatrix} 0 & 6 \

  • 3 & 7 \end{bmatrix}$
C

[2132]\begin{bmatrix} 2 & - 1 \\ 3 & 2 \end{bmatrix}

D

[6101]\begin{bmatrix} 6 & - 1 \\ 0 & 1 \end{bmatrix}

Answer

$\begin{bmatrix}

  • 4 & - 5 \
  • 6 & - 7 \end{bmatrix}$
Explanation

Solution

We have

B = (2A –3B) –2 (A –2B) = 2$\begin{bmatrix}

  • 4 & - 5 \
  • 6 & - 7 \end{bmatrix}$