Solveeit Logo

Question

Question: If A = {2,3,4}, B = {6,8,9,10}. If $\alpha$ represents the number of onto functions, then the value ...

If A = {2,3,4}, B = {6,8,9,10}. If α\alpha represents the number of onto functions, then the value of limx0(α+4)sin2xx2+x3cosx\lim_{x \to 0} \frac{(\alpha + 4) \sin^2 x}{x^2 + x^3 \cos x} is.

A

4

Answer

4

Explanation

Solution

Let A = {2,3,4} and B = {6,8,9,10}. The number of elements in set A is A=3|A| = 3. The number of elements in set B is B=4|B| = 4. An onto function (surjective function) from set A to set B exists only if AB|A| \ge |B|. In this case, A=3|A| = 3 and B=4|B| = 4. Since A<B|A| < |B|, it is not possible to define an onto function from A to B. Therefore, the number of onto functions from A to B is 0. Given that α\alpha represents the number of onto functions, we have α=0\alpha = 0.

Now, we need to evaluate the limit: L=limx0(α+4)sin2xx2+x3cosxL = \lim_{x \to 0} \frac{(\alpha + 4) \sin^2 x}{x^2 + x^3 \cos x} Substitute the value of α=0\alpha = 0 into the limit expression: L=limx0(0+4)sin2xx2+x3cosx=limx04sin2xx2+x3cosxL = \lim_{x \to 0} \frac{(0 + 4) \sin^2 x}{x^2 + x^3 \cos x} = \lim_{x \to 0} \frac{4 \sin^2 x}{x^2 + x^3 \cos x} The expression is in the indeterminate form 00\frac{0}{0} as x0x \to 0. We can factor out x2x^2 from the denominator: L=limx04sin2xx2(1+xcosx)L = \lim_{x \to 0} \frac{4 \sin^2 x}{x^2(1 + x \cos x)} We can rewrite the expression as: L=4limx0(sin2xx2)(11+xcosx)L = 4 \lim_{x \to 0} \left( \frac{\sin^2 x}{x^2} \right) \left( \frac{1}{1 + x \cos x} \right) Using the standard limit limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1, we have limx0sin2xx2=limx0(sinxx)2=12=1\lim_{x \to 0} \frac{\sin^2 x}{x^2} = \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^2 = 1^2 = 1. For the second part of the expression, as x0x \to 0, xcosx0cos(0)=01=0x \cos x \to 0 \cdot \cos(0) = 0 \cdot 1 = 0. So, limx0(1+xcosx)=1+0=1\lim_{x \to 0} (1 + x \cos x) = 1 + 0 = 1. Therefore, limx011+xcosx=11=1\lim_{x \to 0} \frac{1}{1 + x \cos x} = \frac{1}{1} = 1.

Now, substitute these limit values back into the expression for L: L=4×1×1=4L = 4 \times 1 \times 1 = 4 The value of the limit is 4.