Solveeit Logo

Question

Question: If A = 2 tan<sup>–1</sup>(2\(\left( \frac { 1 } { 3 } \right)\)+ sin<sup>–1</sup>\(\left( \frac { 3 ...

If A = 2 tan–1(2(13)\left( \frac { 1 } { 3 } \right)+ sin–1(35)\left( \frac { 3 } { 5 } \right), then-

A

A = B

B

A < B

C

A > B

D

None of these

Answer

A > B

Explanation

Solution

We have A = 2 tan–1(22\sqrt { 2 }– 1) = 2 tan–1 (1.828)

Ž A > 2 tan–1 3\sqrt { 3 } Ž A > 2π3\frac { 2 \pi } { 3 }

Next sin– 1(13)\left( \frac { 1 } { 3 } \right)< sin–1(13)\left( \frac { 1 } { 3 } \right) < π6\frac { \pi } { 6 }

Ž sin– 113\frac { 1 } { 3 }< π2\frac { \pi } { 2 }

Also 3 sin– 1 (13)\left( \frac { 1 } { 3 } \right)= sin–1 [3134(13)3]\left[ 3 \cdot \frac { 1 } { 3 } - 4 \left( \frac { 1 } { 3 } \right) ^ { 3 } \right]

= sin–1 (2327)\left( \frac { 23 } { 27 } \right) = sin–1 (0. 852)

Ž 3 sin–1 (13)\left( \frac { 1 } { 3 } \right) < sin–1 (32)\left( \frac { \sqrt { 3 } } { 2 } \right) Ž 3 sin–1(13)\left( \frac { 1 } { 3 } \right) < π3\frac { \pi } { 3 }

Further sin–1 (35)\left( \frac { 3 } { 5 } \right) = sin–1 (0. 6) < sin–1 (32)\left( \frac { \sqrt { 3 } } { 2 } \right)

Ž sin–1 (35)\left( \frac { 3 } { 5 } \right) < π3\frac { \pi } { 3 }

Hence, B = 3 sin–1(13)\left( \frac { 1 } { 3 } \right)+ sin–1 (35)\left( \frac { 3 } { 5 } \right)

< π3\frac { \pi } { 3 } + π3\frac { \pi } { 3 } = 2π3\frac { 2 \pi } { 3 } . Hence A > B