Solveeit Logo

Question

Physics Question on work, energy and power

If A=2i^+3j^+8k^A = 2 \hat{i} + 3 \hat{j} + 8 \hat{k} is perpendicular to B=4i^+4j^+αk^B= 4 \hat{i} + 4 \hat{j} + \alpha \hat{k}, then the value of α\alpha is

A

12\frac{1}{2}

B

12- \frac{1}{2}

C

1

D

-1

Answer

12\frac{1}{2}

Explanation

Solution

Given,
A=2i^+3j^+8k^A =2 \hat{ i }+3 \hat{ j }+8 \hat{ k }
B=4j^4i^+αk^B =4 \hat{ j }-4 \hat{ i }+ \alpha \hat{ k }
=4i^+4j^+αk^=-4 \hat{ i }+4 \hat{ j }+\alpha \hat{ k }
ABA \perp B Hence, AB=0A \cdot B =0
(2i^+3j^+8k^)(4i^+4j^+αk^)=0\Rightarrow (2 \hat{ i }+3 \hat{ j }+8 \hat{ k }) \cdot(-4 \hat{ i }+4 \hat{ j }+\alpha \hat{ k })=0
8+12+8α=0\Rightarrow -8+12+8 \alpha=0
8α+4=0\Rightarrow 8 \alpha+4=0
8α=4\Rightarrow 8 \alpha=-4
α=48=12\alpha =-\frac{4}{8}=-\frac{1}{2}