Solveeit Logo

Question

Mathematics Question on Sequence and series

If a2,b2,c2a^2, b^2, c^2 are in A.P. consider two statements (i)1b+c,1c+a,1a+b\left(i\right)\, \frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b} are in A.P. (ii)ab+c,bc+a,ca+b\left(ii\right)\, \frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b} are in A.P., then

A

(i) and (ii) both correct

B

(i) and (ii) both incorrect

C

(i) correct (ii) incorrect

D

(i) incorrect (ii) correct

Answer

(i) and (ii) both correct

Explanation

Solution

Given a2,b2,c2a^2, b^2, c^2 are in A.P. a2+(ab+bc+ca),b2+(ab+bc+ca)c2+(ab+bc+ca)\Rightarrow a^{2}+\left(ab+bc+ca\right), b^{2}+\left(ab+bc+ca\right)c^{2}+\left(ab+bc+ca\right) are in A.P. (a+b)(a+c),(b+c),(c+a)(c+b)\Rightarrow \left(a+b\right)\left(a+c\right), \left(b+c\right), \left(c+a\right)\left(c+b\right) are in A.P. 1b+c,1c+a,1a+b\Rightarrow \frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b} are in A.P. [Divide by (a+b)(b+c)(c+a)(a + b) (b + c) ( c + a)] Again, a2,b2,c2a^2, b^2, c^2 are in A.P. 1b+c,1c+a,1a+b\Rightarrow \frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b} are in A.P. a+b+cb+c,a+b+cc+a,a+b+ca+b\Rightarrow \frac{a+b+c}{b+c}, \frac{a+b+c}{c+a}, \frac{a+b+c}{a+b} are in A.P. ab+c+1,bc+a+1,ca+b+1\Rightarrow \frac{a}{b+c}+1, \frac{b}{c+a}+1, \frac{c}{a+b}+1 are in A.P. ab+c,bc+a,ca+b\Rightarrow \frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b} are in A.P.