Solveeit Logo

Question

Question: If \({a^2} + {b^2} + {c^2} = - 2\) and \(f(x) = \left| {\begin{array}{*{20}{l}} {1 + {a^2}x}&{\l...

If a2+b2+c2=2{a^2} + {b^2} + {c^2} = - 2 and f(x) = \left| {\begin{array}{*{20}{l}} {1 + {a^2}x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\\ {\left( {1 + {a^2}} \right)x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\\ {\left( {1 + {a^2}} \right)x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x} \end{array}} \right|. Then, f(x)f(x) is a polynomial of degree
(A)22
(B)33
(C)44
(D)55

Explanation

Solution

The degree of a polynomial is the highest power of the variable in a polynomial
expression. For ex- The degree of a polynomial 6x4+2x3+16{x^4} + 2{x^3} + 1 is 44. In the given
question, we must solve f(x)f\left( x \right) by using the properties of determinants to find its degree.

Complete step by step solution:
Given, f(x) = \left| {\begin{array}{*{20}{l}} {1 + {a^2}x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\\ {\left( {1 + {a^2}} \right)x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\\ {\left( {1 + {a^2}} \right)x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x} \end{array}} \right|
Solve the f(x)f(x) by using elementary row and column transformations.
Applying C1C1+C2+C3{C_1} \to {C_1} + {C_2} + {C_3} to f(x)f(x), we get
f(x) = \left| {\begin{array}{*{20}{l}} {1 + {a^2}x + \left( {1 + {b^2}} \right)x + \left( {1 + {c^2}} \right)x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\\ {\left( {1 + {a^2}} \right)x + 1 + {b^2}x + \left( {1 + {c^2}} \right)x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\\ {\left( {1 + {a^2}} \right)x + \left( {1 + {b^2}} \right)x + 1 + {c^2}x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x} \end{array}} \right|
\Rightarrow f(x) = \left| {\begin{array}{*{20}{l}} {1 + {a^2}x + x + {b^2}x + x + {c^2}x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\\ {x + {a^2}x + 1 + {b^2}x + x + {c^2}x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\\ {x + {a^2}x + x + {b^2}x + 1 + {c^2}x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x} \end{array}} \right|
\Rightarrow f(x) = \left| {\begin{array}{*{20}{l}} {1 + 2x + \left( {{a^2} + {b^2} + {c^2}} \right)x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\\ {1 + 2x + \left( {{a^2} + {b^2} + {c^2}} \right)x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\\ {1 + 2x + \left( {{a^2} + {b^2} + {c^2}} \right)x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x} \end{array}} \right|
Now put a2+b2+c2=2{a^2} + {b^2} + {c^2} = - 2 (Given)
\therefore f(x) = \left| {\begin{array}{*{20}{l}} {1 + 2x + \left( { - 2} \right)x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\\ {1 + 2x + \left( { - 2} \right)x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\\ {1 + 2x + \left( { - 2} \right)x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x} \end{array}} \right|
\Rightarrow f(x) = \left| {\begin{array}{*{20}{l}} {1 + 2x - 2x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\\ {1 + 2x - 2x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\\ {1 + 2x - 2x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x} \end{array}} \right|
\Rightarrow f(x) = \left| {\begin{array}{*{20}{l}} 1&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\\ 1&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\\ 1&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x} \end{array}} \right|
Now applying R2R2R1{R_2} \to {R_2} - {R_1} andR3R3R1{R_3} \to {R_3} - {R_1} to f(x)f(x), we get
f(x) = \left| {\begin{array}{*{20}{l}} 1&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\\ {1 - 1}&{1 + {b^2}x - \left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x - \left( {1 + {c^2}} \right)x} \\\ {1 - 1}&{\left( {1 + {b^2}} \right)x - \left( {1 + {b^2}} \right)x}&{1 + {c^2}x - \left( {1 + {c^2}} \right)x} \end{array}} \right|
\Rightarrow f(x) = \left| {\begin{array}{*{20}{l}} 1&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\\ 0&{1 + {b^2}x - x - {b^2}x}&0 \\\ 0&0&{1 + {c^2}x - x - {c^2}x} \end{array}} \right|
\Rightarrow f(x) = \left| {\begin{array}{*{20}{l}} 1&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\\ 0&{1 - x}&0 \\\ 0&0&{1 - x} \end{array}} \right|
Now expanding the determinant f(x)f(x) along C1{C_1}, we obtain
\Rightarrow f(x) = 1\left\\{ {\left( {1 - x} \right)\left( {1 - x} \right) - \left( {0 \times 0} \right)} \right\\}
f(x)=(1x)2\Rightarrow f(x) = {\left( {1 - x} \right)^2}
f(x)=1+x22x\Rightarrow f(x) = 1 + {x^2} - 2x
As we know that the degree of a polynomial is the highest power of the variable in a polynomial expression. Here the highest power of xx is 22.
Therefore, the degree of the polynomial f(x)f\left( x \right) is 22.

Hence, option (A) is the correct answer.

Note:
While solving the determinant , try to make three 1s1's in any row or column, so that determinant can be solved easily. Also, you must have the knowledge to apply the properties of determinant while solving it.