Question
Question: If \({a^2} + {b^2} + {c^2} = - 2\) and \(f(x) = \left| {\begin{array}{*{20}{l}} {1 + {a^2}x}&{\l...
If a2+b2+c2=−2 and f(x) = \left| {\begin{array}{*{20}{l}}
{1 + {a^2}x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\\
{\left( {1 + {a^2}} \right)x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\\
{\left( {1 + {a^2}} \right)x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|. Then, f(x) is a polynomial of degree
(A)2
(B)3
(C)4
(D)5
Solution
The degree of a polynomial is the highest power of the variable in a polynomial
expression. For ex- The degree of a polynomial 6x4+2x3+1 is 4. In the given
question, we must solve f(x) by using the properties of determinants to find its degree.
Complete step by step solution:
Given, f(x) = \left| {\begin{array}{*{20}{l}}
{1 + {a^2}x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\\
{\left( {1 + {a^2}} \right)x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\\
{\left( {1 + {a^2}} \right)x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|
Solve the f(x) by using elementary row and column transformations.
Applying C1→C1+C2+C3 to f(x), we get
f(x) = \left| {\begin{array}{*{20}{l}}
{1 + {a^2}x + \left( {1 + {b^2}} \right)x + \left( {1 + {c^2}} \right)x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\\
{\left( {1 + {a^2}} \right)x + 1 + {b^2}x + \left( {1 + {c^2}} \right)x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\\
{\left( {1 + {a^2}} \right)x + \left( {1 + {b^2}} \right)x + 1 + {c^2}x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|
⇒ f(x) = \left| {\begin{array}{*{20}{l}}
{1 + {a^2}x + x + {b^2}x + x + {c^2}x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\\
{x + {a^2}x + 1 + {b^2}x + x + {c^2}x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\\
{x + {a^2}x + x + {b^2}x + 1 + {c^2}x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|
⇒ f(x) = \left| {\begin{array}{*{20}{l}}
{1 + 2x + \left( {{a^2} + {b^2} + {c^2}} \right)x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\\
{1 + 2x + \left( {{a^2} + {b^2} + {c^2}} \right)x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\\
{1 + 2x + \left( {{a^2} + {b^2} + {c^2}} \right)x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|
Now put a2+b2+c2=−2 (Given)
∴ f(x) = \left| {\begin{array}{*{20}{l}}
{1 + 2x + \left( { - 2} \right)x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\\
{1 + 2x + \left( { - 2} \right)x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\\
{1 + 2x + \left( { - 2} \right)x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|
⇒ f(x) = \left| {\begin{array}{*{20}{l}}
{1 + 2x - 2x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\\
{1 + 2x - 2x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\\
{1 + 2x - 2x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|
⇒ f(x) = \left| {\begin{array}{*{20}{l}}
1&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\\
1&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\\
1&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|
Now applying R2→R2−R1 andR3→R3−R1 to f(x), we get
f(x) = \left| {\begin{array}{*{20}{l}}
1&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\\
{1 - 1}&{1 + {b^2}x - \left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x - \left( {1 + {c^2}} \right)x} \\\
{1 - 1}&{\left( {1 + {b^2}} \right)x - \left( {1 + {b^2}} \right)x}&{1 + {c^2}x - \left( {1 + {c^2}} \right)x}
\end{array}} \right|
\Rightarrow f(x) = \left| {\begin{array}{*{20}{l}}
1&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\\
0&{1 + {b^2}x - x - {b^2}x}&0 \\\
0&0&{1 + {c^2}x - x - {c^2}x}
\end{array}} \right|
\Rightarrow f(x) = \left| {\begin{array}{*{20}{l}}
1&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\\
0&{1 - x}&0 \\\
0&0&{1 - x}
\end{array}} \right|
Now expanding the determinant f(x) along C1, we obtain
\Rightarrow f(x) = 1\left\\{ {\left( {1 - x} \right)\left( {1 - x} \right) - \left( {0 \times 0} \right)} \right\\}
⇒f(x)=(1−x)2
⇒f(x)=1+x2−2x
As we know that the degree of a polynomial is the highest power of the variable in a polynomial expression. Here the highest power of x is 2.
Therefore, the degree of the polynomial f(x) is 2.
Hence, option (A) is the correct answer.
Note:
While solving the determinant , try to make three 1′s in any row or column, so that determinant can be solved easily. Also, you must have the knowledge to apply the properties of determinant while solving it.