Solveeit Logo

Question

Question: If \({A^2} = A\), then \({\left( {1 + A} \right)^4}\) is equal to A. \(I + A\) B. \(I + 4A\) C...

If A2=A{A^2} = A, then (1+A)4{\left( {1 + A} \right)^4} is equal to
A. I+AI + A
B. I+4AI + 4A
C. I+15AI + 15A
D. none of these

Explanation

Solution

Whenever we have this type of problem, try to rewrite the problem which makes simplification easier. Now (1+A)4{\left( {1 + A} \right)^4} can be written as (1+A)2(1+A)2{\left( {1 + A} \right)^2}{\left( {1 + A} \right)^2}. In this first find the value for (1+A)2{\left( {1 + A} \right)^2} which is of the form (a+b)2=a2+2ab+b2{(a + b)^2} = {a^2} + 2ab + {b^2}. And then the result obtained will be multiplied twice to arrive at the correct answer.

Complete Step by Step Solution:
Here in this question we have given an expression which is (1+A)4{\left( {1 + A} \right)^4} to simplify. First try to rewrite the given expression (1+A)4{\left( {1 + A} \right)^4} in such a way that the simplification becomes easier.
Now (1+A)4{\left( {1 + A} \right)^4} can be written as (1+A)2(1+A)2{\left( {1 + A} \right)^2}{\left( {1 + A} \right)^2}. If we find the value for (1+A)2{\left( {1 + A} \right)^2} then we can easily get the answer for (1+A)4{\left( {1 + A} \right)^4}.
(1+A)2{\left( {1 + A} \right)^2} is of the form (a+b)2{(a + b)^2} which can be solved using the formula given by: (a+b)2=a2+2ab+b2{(a + b)^2} = {a^2} + 2ab + {b^2}. Here a=1a = 1 and b=Ab = A.
Now by making use of the (a+b)2{(a + b)^2} formula we can find the value of (1+A)2{\left( {1 + A} \right)^2} as below.
(1+A)2=(1+A)(1+A){\left( {1 + A} \right)^2} = \left( {1 + A} \right)\left( {1 + A} \right)
On simplifying the above expression, we get
(1+A)2=12+2A+A2\Rightarrow {\left( {1 + A} \right)^2} = {1^2} + 2A + {A^2} or
(1+A)2=1+2A+A2\Rightarrow {\left( {1 + A} \right)^2} = 1 + 2A + {A^2}
Now to find the value of (1+A)4{\left( {1 + A} \right)^4} , we can write as
(1+A)4=(1+A)2(1+A)2{\left( {1 + A} \right)^4} = {\left( {1 + A} \right)^2}{\left( {1 + A} \right)^2}
(1+A)4=(1+2A+A2)(1+2A+A2)\Rightarrow {\left( {1 + A} \right)^4} = \left( {1 + 2A + {A^2}} \right)\left( {1 + 2A + {A^2}} \right)
Now simplify the above expression that is by multiplying the terms, we get
(1+A)4=12+2A+A2+2A+4A2+2A3+A2+2A3+A4\Rightarrow {\left( {1 + A} \right)^4} = {1^2} + 2A + {A^2} + 2A + 4{A^2} + 2{A^3} + {A^2} + 2{A^3} + {A^4}
Now, add the common terms, we get
(1+A)4=1+4A+6A2+4A3+A4\Rightarrow {\left( {1 + A} \right)^4} = 1 + 4A + 6{A^2} + 4{A^3} + {A^4}
The above expression can be written as
(1+A)4=1+4A+6A2+4A2.A+(A2)2\Rightarrow {\left( {1 + A} \right)^4} = 1 + 4A + 6{A^2} + 4{A^2}.A + {\left( {{A^2}} \right)^2}
Now from the given question, we have A2=A{A^2} = A , so wherever we have A2{A^2} in the above expression replace it by AA . Therefore we get
(1+A)4=1+4A+6A+4A.A+A2\Rightarrow {\left( {1 + A} \right)^4} = 1 + 4A + 6A + 4A.A + {A^2}
(1+A)4=1+4A+6A+4A2+A2\Rightarrow {\left( {1 + A} \right)^4} = 1 + 4A + 6A + 4{A^2} + {A^2}
Now, add the like terms, we get
(1+A)4=1+10A+5A2\Rightarrow {\left( {1 + A} \right)^4} = 1 + 10A + 5{A^2}
Again we have A2{A^2} in the above expression replace it by AA , we get
(1+A)4=1+10A+5A\Rightarrow {\left( {1 + A} \right)^4} = 1 + 10A + 5A
(1+A)4=1+15A\Rightarrow {\left( {1 + A} \right)^4} = 1 + 15A

Hence the option C is the correct answer.

Note:
Whenever we have this type of problems then try to reduce so that we can simplify easily otherwise if you know the (a+b)4=a4+4a3b+6a2b2+4ab3+b4{\left( {a + b} \right)^4} = {a^4} + 4{a^3}b + 6{a^2}{b^2} + 4a{b^3} + {b^4} this formula then you can directly substitute and calculate the answer.