Solveeit Logo

Question

Question: If A={ -1,1}, then find \(A\times A\times A\) ....

If A={ -1,1}, then find A×A×AA\times A\times A .

Explanation

Solution

To find A×A×AA\times A\times A , we will use the property of the Cartesian product of a non-empty set A. This property states that the Cartesian product of the set A will be the ordered pairs of the elements of A or we can write it as A\times A\times A=\left\\{ \left( a,b,c \right):a,b,c,\in A \right\\} .

Complete step by step answer:
We have to find A×A×AA\times A\times A . We are given that A=\left\\{ -1,1 \right\\} . We know that for a non-empty set A, the Cartesian product of the set A will be the ordered pairs of the elements of A, that is,
A\times A\times A=\left\\{ \left( a,b,c \right):a,b,c,\in A \right\\}
We have to write the set of various combinations of \left\\{ -1,1 \right\\} with the number of elements in each combination as 3.
\Rightarrow A\times A\times A=\left\\{ \left( -1,-1,-1 \right),\left( -1,-1,1 \right),\left( -1,1,-1 \right),\left( -1,1,1 \right),\left( 1,-1,-1 \right),\left( 1,-1,1 \right),\left( 1,1,-1 \right)\left( 1,1,1 \right) \right\\}

Note: Students must understand what ordered pair means. Sets of ordered pairs are the pair of elements that occur in particular order and are enclosed in brackets. If a set P contains x elements and another set Q contains y elements, then the number of elements in the cartesian product of the sets P and Q will be the product of x and y (that is, xy). Therefore, we can verify the result by confirming the number of elements in A×A×AA\times A\times A using this rule. Here, we are given that A=\left\\{ -1,1 \right\\} , that is, the number of elements is 2. Then, the number of elements in A×A×AA\times A\times A can be found by multiplying 2 thrice.
2×2×2=82\times 2\times 2=8
Therefore, elements are present.
We can also find A×A×AA\times A\times A by an alternate way.
We will first find A×AA\times A using the property A\times A=\left\\{ \left( a,b \right):a,b\in A \right\\} .
\begin{aligned} & \Rightarrow A\times A=\left\\{ -1,1 \right\\}\times \left\\{ -1,1 \right\\} \\\ & \Rightarrow A\times A=\left\\{ \left( -1,-1 \right),\left( -1,1 \right).\left( 1,-1 \right),\left( 1,1 \right) \right\\} \\\ \end{aligned}
Now, we have to find A×A×AA\times A\times A .
\begin{aligned} & \Rightarrow A\times A\times A=\left\\{ \left( -1,-1 \right),\left( -1,1 \right).\left( 1,-1 \right),\left( 1,1 \right) \right\\}\times \left\\{ -1,1 \right\\} \\\ & \Rightarrow A\times A\times A=\left\\{ \left( -1,-1,-1 \right),\left( -1,-1,1 \right),\left( -1,1,-1 \right),\left( -1,1,1 \right),\left( 1,-1,-1 \right),\left( 1,-1,1 \right),\left( 1,1,-1 \right)\left( 1,1,1 \right) \right\\} \\\ \end{aligned}