Solveeit Logo

Question

Mathematics Question on Sequence and series

If a<1,|a|<1, then 1+2a+3a2+4a3+.....1+2a+3{{a}^{2}}+4{{a}^{3}}+..... is equal to

A

11a\frac{1}{1-a}

B

11+a\frac{1}{1+a}

C

11+a2\frac{1}{1+{{a}^{2}}}

D

1(1a)2\frac{1}{{{(1-a)}^{2}}}

Answer

1(1a)2\frac{1}{{{(1-a)}^{2}}}

Explanation

Solution

The correct answer is(D): =1(1a)2.=\frac{1}{{{(1-a)}^{2}}}.

Given series, 1+2a+3a2+4a3+....1+2a+3{{a}^{2}}+4{{a}^{3}}+....
is a arithmetic geometric series. Here,
a1=1,d=1,r=a{{a}_{1}}=1,\,\,d=1,\,\,r=a
\therefore S=a11r+d.r(1r)2{{S}_{\infty }}=\frac{{{a}_{1}}}{1-r}+\frac{d.r}{{{(1-r)}^{2}}}
=11a+1.a(1a)2=\frac{1}{1-a}+\frac{1.a}{{{(1-a)}^{2}}}
=1(1a)2=\frac{1}{{{(1-a)}^{2}}}