Solveeit Logo

Question

Question: If A = 1 + r<sup>a</sup> + r<sup>2a</sup> + r<sup>3a</sup> + ….¥ and B = 1 + r<sup>b</sup> + r<sup>2...

If A = 1 + ra + r2a + r3a + ….¥ and B = 1 + rb + r2b + r3b + ….¥ , then is equal to –

A

logB A

B

log1–B (1 – A)

C

logB1B\log _ { \frac { B - 1 } { } } ^ { B }

D

None of these

Answer

logB1B\log _ { \frac { B - 1 } { } } ^ { B }

Explanation

Solution

A = ̃ 1 – ra = 1 A\frac { 1 } { \mathrm {~A} } ̃ ra = 1 – =

B = 11rb\frac { 1 } { 1 - r ^ { b } } ̃ 1 – rb = 1B\frac { 1 } { B } ̃ rb = 1 – = B1B\frac { B - 1 } { B }

\ a log r = log (A1 A)\left( \frac { \mathrm { A } - 1 } { \mathrm {~A} } \right) and b log r = log (B1B)\left( \frac { B - 1 } { B } \right)

\ ab\frac { \mathrm { a } } { \mathrm { b } } = = (A1 A)\left( \frac { \mathrm { A } - 1 } { \mathrm {~A} } \right) .

Hence (3) is the correct answer.