Solveeit Logo

Question

Question: If \[{A^{ - 1}} = \left[ {\begin{array}{*{20}{l}}{ - 3}&0&2\\\\{ - 1}&{\dfrac{1}{2}}&{\dfrac{1}{2}}\...

If {A^{ - 1}} = \left[ {\begin{array}{*{20}{l}}{ - 3}&0&2\\\\{ - 1}&{\dfrac{1}{2}}&{\dfrac{1}{2}}\\\2&0&{ - 1}\end{array}} \right] hence prove that A36A2+7A+2I=0{A^3} - 6{A^2} + 7A + 2I = 0

Explanation

Solution

Here, we will prove the given condition. We will find the original matrix from the given inverse of a matrix and then find the square and cube of a matrix and by substituting these matrices in the equation, we will prove the given condition.

Formula Used:
We will use the following formula:
1.The inverse of a matrix is given by A1=Adj(A)A{A^{ - 1}} = \dfrac{{Adj\left( A \right)}}{{\left| A \right|}}
2.Transpose of a matrix is given by the formula AT=[aij]n×m{A^T} = {\left[ {{a_{ij}}} \right]_{n \times m}}
3.The inverse of a matrix is given by A1=Adj(A)A{A^{ - 1}} = \dfrac{{Adj\left( A \right)}}{{\left| A \right|}}

Complete step-by-step answer:
We are given the inverse of a matrix {A^{ - 1}} = \left[ {\begin{array}{*{20}{l}}{ - 3}&0&2\\\\{ - 1}&{\dfrac{1}{2}}&{\dfrac{1}{2}}\\\2&0&{ - 1}\end{array}} \right]
Now, we will find the original matrix AA .
We know that the inverse of an inverse matrix is an original matrix.
Now, we will find the determinant of the matrix DD.
\Rightarrow \left| {\begin{array}{*{20}{l}}{ - 3}&0&2\\\\{ - 1}&{\dfrac{1}{2}}&{\dfrac{1}{2}}\\\2&0&{ - 1}\end{array}} \right| = - 3\left| {\begin{array}{*{20}{l}}{\dfrac{1}{2}}&{\dfrac{1}{2}}\\\0&{ - 1}\end{array}} \right| - 0\left| {\begin{array}{*{20}{l}}{ - 1}&{\dfrac{1}{2}}\\\2&{ - 1}\end{array}} \right| + 2\left| {\begin{array}{*{20}{l}}{ - 1}&{\dfrac{1}{2}}\\\2&0\end{array}} \right|
\Rightarrow \left| {\begin{array}{*{20}{l}}{ - 3}&0&2\\\\{ - 1}&{\dfrac{1}{2}}&{\dfrac{1}{2}}\\\2&0&{ - 1}\end{array}} \right| = - 3\left( {\dfrac{{ - 1}}{2}} \right) - 0 + 2\left( {\dfrac{{ - 2}}{2}} \right)
\Rightarrow \left| {\begin{array}{*{20}{l}}{ - 3}&0&2\\\\{ - 1}&{\dfrac{1}{2}}&{\dfrac{1}{2}}\\\2&0&{ - 1}\end{array}} \right| = \dfrac{3}{2} - 2
\Rightarrow \left| {\begin{array}{*{20}{l}}{ - 3}&0&2\\\\{ - 1}&{\dfrac{1}{2}}&{\dfrac{1}{2}}\\\2&0&{ - 1}\end{array}} \right| = \dfrac{3}{2} - 2 \times \dfrac{2}{2}
\Rightarrow \left| {\begin{array}{*{20}{l}}{ - 3}&0&2\\\\{ - 1}&{\dfrac{1}{2}}&{\dfrac{1}{2}}\\\2&0&{ - 1}\end{array}} \right| = \dfrac{{3 - 4}}{2}
\Rightarrow \left| {\begin{array}{*{20}{l}}{ - 3}&0&2\\\\{ - 1}&{\dfrac{1}{2}}&{\dfrac{1}{2}}\\\2&0&{ - 1}\end{array}} \right| = \dfrac{{ - 1}}{2} \ne 0
Since the determinant of the matrix is not zero, then there exist an inverse of the matrix.
Now, we will find the Adjoint of a matrix by finding the transpose of a matrix with cofactors.
\Rightarrow adj{A^{ - 1}} = {\left[ {\begin{array}{*{20}{l}}{ + \left| {\begin{array}{*{20}{l}}{\dfrac{1}{2}}&{\dfrac{1}{2}}\\\0&{ - 1}\end{array}} \right|}&{ - \left| {\begin{array}{*{20}{l}}{ - 1}&{\dfrac{1}{2}}\\\2&{ - 1}\end{array}} \right|}&{ + \left| {\begin{array}{*{20}{l}}{ - 1}&{\dfrac{1}{2}}\\\2&0\end{array}} \right|}\\\\{ - \left| {\begin{array}{*{20}{l}}0&2\\\0&{ - 1}\end{array}} \right|}&{ + \left| {\begin{array}{*{20}{l}}{ - 3}&2\\\2&{ - 1}\end{array}} \right|}&{ - \left| {\begin{array}{*{20}{l}}{ - 3}&0\\\2&0\end{array}} \right|}\\\\{ + \left| {\begin{array}{*{20}{l}}0&2\\\\{\dfrac{1}{2}}&{\dfrac{1}{2}}\end{array}} \right|}&{ - \left| {\begin{array}{*{20}{l}}{ - 3}&2\\\\{ - 1}&{\dfrac{1}{2}}\end{array}} \right|}&{ + \left| {\begin{array}{*{20}{l}}{ - 3}&0\\\\{ - 1}&{\dfrac{1}{2}}\end{array}} \right|}\end{array}} \right]^T}
\Rightarrow adj{A^{ - 1}} = {\left[ {\begin{array}{*{20}{l}}{ + \left( {\dfrac{{ - 1}}{2}} \right)}&{ - \left( {1 - \dfrac{2}{2}} \right)}&{ + \left( {\dfrac{{ - 2}}{2}} \right)}\\\0&{ + \left( {3 - 4} \right)}&0\\\\{ + \left( {\dfrac{{ - 2}}{2}} \right)}&{ - \left( {\dfrac{{ - 3}}{2} + 2} \right)}&{ + \left( {\dfrac{{ - 3}}{2}} \right)}\end{array}} \right]^T}
\Rightarrow adj{A^{ - 1}} = {\left[ {\begin{array}{*{20}{l}}{ + \left( {\dfrac{{ - 1}}{2}} \right)}&{ - \left( {1 - 1} \right)}&{ + \left( { - 1} \right)}\\\0&{ + \left( { - 1} \right)}&0\\\\{ + \left( { - 1} \right)}&{ - \left( {\dfrac{1}{2}} \right)}&{ + \left( {\dfrac{{ - 3}}{2}} \right)}\end{array}} \right]^T}
\Rightarrow adj{A^{ - 1}} = {\left[ {\begin{array}{*{20}{l}}{\left( {\dfrac{{ - 1}}{2}} \right)}&0&{\left( { - 1} \right)}\\\0&{\left( { - 1} \right)}&0\\\\{\left( { - 1} \right)}&{\left( {\dfrac{{ - 1}}{2}} \right)}&{\left( {\dfrac{{ - 3}}{2}} \right)}\end{array}} \right]^T}
Transpose of a matrix is given by the formula AT=[aij]n×m{A^T} = {\left[ {{a_{ij}}} \right]_{n \times m}} where A=[aij]m×nA = {\left[ {{a_{ij}}} \right]_{m \times n}}
\Rightarrow adj{A^{ - 1}} = \left[ {\begin{array}{*{20}{l}}{\left( {\dfrac{{ - 1}}{2}} \right)}&0&{\left( { - 1} \right)}\\\0&{\left( { - 1} \right)}&{\left( {\dfrac{{ - 1}}{2}} \right)}\\\\{\left( { - 1} \right)}&0&{\left( {\dfrac{{ - 3}}{2}} \right)}\end{array}} \right]
Now, we will find the inverse of a matrix.
The inverse of a matrix is given by A1=Adj(A)A{A^{ - 1}} = \dfrac{{Adj\left( A \right)}}{{\left| A \right|}}
(A1)1=1A1adj(A1)\Rightarrow {\left( {{A^{ - 1}}} \right)^{ - 1}} = \dfrac{1}{{\left| {{A^{ - 1}}} \right|}}adj\left( {{A^{ - 1}}} \right)
Thus, we get
\Rightarrow {\left( {{A^{ - 1}}} \right)^{ - 1}} = \dfrac{1}{{\dfrac{{ - 1}}{2}}}\left[ {\begin{array}{*{20}{l}}{\left( {\dfrac{{ - 1}}{2}} \right)}&0&{\left( { - 1} \right)}\\\0&{\left( { - 1} \right)}&{\left( {\dfrac{{ - 1}}{2}} \right)}\\\\{\left( { - 1} \right)}&0&{\left( {\dfrac{{ - 3}}{2}} \right)}\end{array}} \right]
\Rightarrow {\left( {{A^{ - 1}}} \right)^{ - 1}} = - 2\left[ {\begin{array}{*{20}{l}}{\left( {\dfrac{{ - 1}}{2}} \right)}&0&{\left( { - 1} \right)}\\\0&{\left( { - 1} \right)}&{\left( {\dfrac{{ - 1}}{2}} \right)}\\\\{\left( { - 1} \right)}&0&{\left( {\dfrac{{ - 3}}{2}} \right)}\end{array}} \right]
By multiplying the terms, we get
\Rightarrow {\left( {{A^{ - 1}}} \right)^{ - 1}} = \left[ {\begin{array}{*{20}{l}}{\left( {\dfrac{2}{2}} \right)}&0&{\left( 2 \right)}\\\0&{\left( 2 \right)}&{\left( {\dfrac{2}{2}} \right)}\\\\{\left( 2 \right)}&0&{\left( {\dfrac{{ - 3 \times - 2}}{2}} \right)}\end{array}} \right]
\Rightarrow {\left( {{A^{ - 1}}} \right)^{ - 1}} = \left[ {\begin{array}{*{20}{l}}1&0&2\\\0&2&1\\\2&0&3\end{array}} \right]
\Rightarrow A = \left[ {\begin{array}{*{20}{l}}1&0&2\\\0&2&1\\\2&0&3\end{array}} \right] ……………………………………………………..(1)\left( 1 \right)
Now, we will find the square of the Matrix A.
A2=A×A\Rightarrow {A^2} = A \times A
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{l}}1&0&2\\\0&2&1\\\2&0&3\end{array}} \right] \times \left[ {\begin{array}{*{20}{l}}1&0&2\\\0&2&1\\\2&0&3\end{array}} \right]
By Matrix Multiplication, we get
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{l}}{1 + 0 + 4}&{0 + 0 + 0}&{2 + 0 + 6}\\\\{0 + 0 + 2}&{0 + 4 + 0}&{0 + 2 + 3}\\\\{2 + 0 + 6}&{0 + 0 + 0}&{4 + 0 + 9}\end{array}} \right]
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{l}}5&0&8\\\2&4&5\\\8&0&{13}\end{array}} \right] ………………………………………………………………………………………………………..(2)\left( 2 \right)
Now, we will find the cube of the matrix A
A3=A2×A\Rightarrow {A^3} = {A^2} \times A
\Rightarrow {A^3} = \left[ {\begin{array}{*{20}{l}}5&0&8\\\2&4&5\\\8&0&{13}\end{array}} \right] \times \left[ {\begin{array}{*{20}{l}}1&0&2\\\0&2&1\\\2&0&3\end{array}} \right]
By Matrix Multiplication, we get
\Rightarrow {A^3} = \left[ {\begin{array}{*{20}{l}}{5 + 0 + 16}&{0 + 0 + 0}&{10 + 0 + 24}\\\\{2 + 0 + 10}&{0 + 8 + 0}&{4 + 4 + 15}\\\\{8 + 0 + 26}&{0 + 0 + 0}&{16 + 0 + 39}\end{array}} \right]
\Rightarrow {A^3} = \left[ {\begin{array}{*{20}{l}}{21}&0&{34}\\\\{12}&8&{23}\\\\{34}&0&{55}\end{array}} \right] …………………………………………(3)\left( 3 \right)
Now, we will prove that A36A2+7A+2I=0{A^3} - 6{A^2} + 7A + 2I = 0
Now, by substituting (1),(2),(3)\left( 1 \right),\left( 2 \right),\left( 3 \right) , we get
A36A2+7A+2I=0\Rightarrow {A^3} - 6{A^2} + 7A + 2I = 0
\Rightarrow \left[ {\begin{array}{*{20}{l}}{21}&0&{34}\\\\{12}&8&{23}\\\\{34}&0&{55}\end{array}} \right] - 6\left[ {\begin{array}{*{20}{l}}5&0&8\\\2&4&5\\\8&0&{13}\end{array}} \right] + 7\left[ {\begin{array}{*{20}{l}}1&0&2\\\0&2&1\\\2&0&3\end{array}} \right] + 2\left[ {\begin{array}{*{20}{l}}1&0&0\\\0&1&0\\\0&0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{l}}{21}&0&{34}\\\\{12}&8&{23}\\\\{34}&0&{55}\end{array}} \right] + \left[ {\begin{array}{*{20}{l}}{ - 30}&0&{ - 48}\\\\{ - 12}&{ - 24}&{ - 30}\\\\{ - 48}&0&{ - 78}\end{array}} \right] + \left[ {\begin{array}{*{20}{l}}7&0&{14}\\\0&{14}&7\\\\{14}&0&{21}\end{array}} \right] + \left[ {\begin{array}{*{20}{l}}2&0&0\\\0&2&0\\\0&0&2\end{array}} \right]
By adding, we get
\Rightarrow \left[ {\begin{array}{*{20}{l}}{21}&0&{40}\\\\{12}&8&{23}\\\\{34}&0&{55}\end{array}} \right] - 6\left[ {\begin{array}{*{20}{l}}5&0&8\\\2&4&5\\\8&0&{13}\end{array}} \right] + 7\left[ {\begin{array}{*{20}{l}}1&0&2\\\0&2&1\\\2&0&3\end{array}} \right] + 2\left[ {\begin{array}{*{20}{l}}1&0&0\\\0&1&0\\\0&0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{l}}{21 - 30 + 7 + 1}&{0 + 0 + 0 + 0}&{34 - 48 + 14 + 0}\\\\{12 - 12 + 0 + 0}&{8 - 24 + 14 + 2}&{23 - 30 + 7 + 0}\\\\{34 - 48 + 14 + 0}&{0 + 0 + 0 + 0}&{55 - 78 + 21 + 2}\end{array}} \right]
\Rightarrow \left[ {\begin{array}{*{20}{l}}{21}&0&{40}\\\\{12}&8&{23}\\\\{34}&0&{55}\end{array}} \right] - 6\left[ {\begin{array}{*{20}{l}}5&0&8\\\2&4&5\\\8&0&{13}\end{array}} \right] + 7\left[ {\begin{array}{*{20}{l}}1&0&2\\\0&2&1\\\2&0&3\end{array}} \right] + 2\left[ {\begin{array}{*{20}{l}}1&0&0\\\0&1&0\\\0&0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{l}}{30 - 30}&0&{48 - 48}\\\\{12 - 12}&{24 - 24}&{30 - 30}\\\\{48 - 48}&0&{78 - 78}\end{array}} \right]
\Rightarrow \left[ {\begin{array}{*{20}{l}}{21}&0&{40}\\\\{12}&8&{23}\\\\{34}&0&{55}\end{array}} \right] - 6\left[ {\begin{array}{*{20}{l}}5&0&8\\\2&4&5\\\8&0&{13}\end{array}} \right] + 7\left[ {\begin{array}{*{20}{l}}1&0&2\\\0&2&1\\\2&0&3\end{array}} \right] + 2\left[ {\begin{array}{*{20}{l}}1&0&0\\\0&1&0\\\0&0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{l}}0&0&0\\\0&0&0\\\0&0&0\end{array}} \right]
Therefore, A36A2+7A+2I=0{A^3} - 6{A^2} + 7A + 2I = 0 .

Note: We know that the matrix multiplication is possible only if the number of columns in one matrix is equal to the number of rows in another matrix. II is the Identity matrix which should always be equal to the dimensions of the other matrix in the given condition. Identity matrix is a diagonal matrix with its diagonal as 1. If all the elements in a matrix are zero, then the matrix is said to be a null matrix. So, the given A36A2+7A+2I{A^3} - 6{A^2} + 7A + 2I is a null matrix. We should remember that the square of the matrix is defined as the product of itself two times and not the square of the elements in the matrix.