Solveeit Logo

Question

Question: If $A^{-1} = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & -1/3 \end{bmatrix}$, then...

If A1=[112031001/3]A^{-1} = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & -1/3 \end{bmatrix}, then

A

A=1|A| = -1

B

adj A=[112031001/3]A = \begin{bmatrix} -1 & 1 & -2 \\ 0 & -3 & -1 \\ 0 & 0 & 1/3 \end{bmatrix}

C

A=[11/3701/31003]A = \begin{bmatrix} 1 & 1/3 & 7 \\ 0 & 1/3 & 1 \\ 0 & 0 & -3 \end{bmatrix}

D

A=[11/37030001]A = \begin{bmatrix} 1 & 1/3 & -7 \\ 0 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix}

Answer

Options (A), (B), and (C) are correct.

Explanation

Solution

To solve the problem, we are given the inverse of matrix A, A1A^{-1}, and we need to determine which of the given options are correct.

Given: A1=[112031001/3]A^{-1} = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & -1/3 \end{bmatrix}

Let's evaluate each option:

Option (A): A=1|A| = -1

We know that for any invertible matrix A, A1=1A|A^{-1}| = \frac{1}{|A|}.

The given matrix A1A^{-1} is an upper triangular matrix. The determinant of an upper triangular matrix is the product of its diagonal elements.

A1=(1)×(3)×(1/3)=1|A^{-1}| = (1) \times (3) \times (-1/3) = -1.

Now, using the property A1=1A|A^{-1}| = \frac{1}{|A|}:

1=1A-1 = \frac{1}{|A|}

This implies A=1|A| = -1.

So, Option (A) is correct.

Option (B): adj A=[112031001/3]A = \begin{bmatrix} -1 & 1 & -2 \\ 0 & -3 & -1 \\ 0 & 0 & 1/3 \end{bmatrix}

We know the formula relating A1A^{-1}, A|A|, and adj A:

A1=1Aadj AA^{-1} = \frac{1}{|A|} \text{adj } A

From Option (A), we found A=1|A| = -1.

Substitute the value of A|A| into the formula:

adj A=AA1\text{adj } A = |A| A^{-1}

adj A=(1)[112031001/3]\text{adj } A = (-1) \begin{bmatrix} 1 & -1 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & -1/3 \end{bmatrix}

adj A=[112031001/3]\text{adj } A = \begin{bmatrix} -1 & 1 & -2 \\ 0 & -3 & -1 \\ 0 & 0 & 1/3 \end{bmatrix}

So, Option (B) is correct.

Option (C): A=[11/3701/31003]A = \begin{bmatrix} 1 & 1/3 & 7 \\ 0 & 1/3 & 1 \\ 0 & 0 & -3 \end{bmatrix}

To find matrix A, we need to find the inverse of A1A^{-1}, i.e., A=(A1)1A = (A^{-1})^{-1}.

Let B=A1=[112031001/3]B = A^{-1} = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & -1/3 \end{bmatrix}.

We need to calculate B1B^{-1}. The formula for the inverse of a matrix B is B1=1Badj BB^{-1} = \frac{1}{|B|} \text{adj } B.

We already found B=A1=1|B| = |A^{-1}| = -1.

Now, let's find the adjoint of B. The adjoint of B is the transpose of its cofactor matrix.

Let CijC_{ij} be the cofactor of element bijb_{ij} in matrix B.

C11=3101/3=3(1/3)1(0)=1C_{11} = \begin{vmatrix} 3 & 1 \\ 0 & -1/3 \end{vmatrix} = 3(-1/3) - 1(0) = -1

C12=0101/3=(00)=0C_{12} = - \begin{vmatrix} 0 & 1 \\ 0 & -1/3 \end{vmatrix} = -(0 - 0) = 0

C13=0300=00=0C_{13} = \begin{vmatrix} 0 & 3 \\ 0 & 0 \end{vmatrix} = 0 - 0 = 0

C21=1201/3=((1)(1/3)2(0))=(1/3)=1/3C_{21} = - \begin{vmatrix} -1 & 2 \\ 0 & -1/3 \end{vmatrix} = -((-1)(-1/3) - 2(0)) = -(1/3) = -1/3

C22=1201/3=(1)(1/3)2(0)=1/3C_{22} = \begin{vmatrix} 1 & 2 \\ 0 & -1/3 \end{vmatrix} = (1)(-1/3) - 2(0) = -1/3

C23=1100=(00)=0C_{23} = - \begin{vmatrix} 1 & -1 \\ 0 & 0 \end{vmatrix} = -(0 - 0) = 0

C31=1231=(1)(1)2(3)=16=7C_{31} = \begin{vmatrix} -1 & 2 \\ 3 & 1 \end{vmatrix} = (-1)(1) - 2(3) = -1 - 6 = -7

C32=1201=(1(1)2(0))=1C_{32} = - \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} = -(1(1) - 2(0)) = -1

C33=1103=1(3)(1)(0)=3C_{33} = \begin{vmatrix} 1 & -1 \\ 0 & 3 \end{vmatrix} = 1(3) - (-1)(0) = 3

The cofactor matrix of B is C=[1001/31/30713]C = \begin{bmatrix} -1 & 0 & 0 \\ -1/3 & -1/3 & 0 \\ -7 & -1 & 3 \end{bmatrix}.

The adjoint of B is adj B=CT=[11/3701/31003]\text{adj } B = C^T = \begin{bmatrix} -1 & -1/3 & -7 \\ 0 & -1/3 & -1 \\ 0 & 0 & 3 \end{bmatrix}.

Now, calculate A=B1=1Badj BA = B^{-1} = \frac{1}{|B|} \text{adj } B:

A=11[11/3701/31003]A = \frac{1}{-1} \begin{bmatrix} -1 & -1/3 & -7 \\ 0 & -1/3 & -1 \\ 0 & 0 & 3 \end{bmatrix}

A=[11/3701/31003]A = \begin{bmatrix} 1 & 1/3 & 7 \\ 0 & 1/3 & 1 \\ 0 & 0 & -3 \end{bmatrix}

So, Option (C) is correct.

Option (D): A=[11/37030001]A = \begin{bmatrix} 1 & 1/3 & -7 \\ 0 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix}

Comparing this with the calculated matrix A from Option (C), this option is incorrect.

Based on the calculations, options (A), (B), and (C) are correct.