Solveeit Logo

Question

Mathematics Question on Determinants

If a1+b1+c1=0a^{-1} + b^{-1} + c^{-1} = 0 such that 1+a11 11+b1 111+c=λ\begin{vmatrix}1+a&1&1\\\ 1&1+b&1\\\ 1&1&1+c\end{vmatrix} = \lambda then the value of λ\lambda is :

A

0

B

- abc

C

abc

D

none of these

Answer

abc

Explanation

Solution

Given : a1+b1+c1=0a^{-1} + b^{-1} +c^{-1} = 0 .....(1) and 1+a11 11+b1 111+c=λ,\begin{vmatrix}1+a&1&1\\\ 1&1+b&1\\\ 1&1&1+c\end{vmatrix} = \lambda, abc1+aa1a1a 1b1+bb1b 1c1c1+cc=λ\Rightarrow abc \begin{vmatrix}\frac{1+a}{a}&\frac{1}{a}&\frac{1}{a}\\\ \frac{1}{b}&\frac{1+b}{b}&\frac{1}{b}\\\ \frac{1}{c}&\frac{1}{c}&\frac{1+c}{c}\end{vmatrix} = \lambda abc 1a+11a1a 1b1b+11b 1c1c1c+1=λ\Rightarrow abc \ \begin{vmatrix}\frac{1}{a}+1&\frac{1}{a}&\frac{1}{a}\\\ \frac{1}{b}&\frac{1}{b}+1&\frac{1}{b}\\\ \frac{1}{c}&\frac{1}{c}&\frac{1}{c}+1\end{vmatrix} =\lambda (R1R1+R2+R3)(R_1 \to R_1 + R_2 + R_3) abc1a+1b+1c+11a+1b+1c+11a+1b+1c+1 1b1b+11b 1c1c1c+1=λ\Rightarrow abc \begin{vmatrix}\frac{1}{a}+\frac{1}{b}+\frac{1}{c} + 1&\frac{1}{a}+\frac{1}{b}+\frac{1}{c} +1&\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1\\\ \frac{1}{b}&\frac{1}{b}+1& \frac{1}{b}\\\ \frac{1}{c}&\frac{1}{c}&\frac{1}{c} + 1\end{vmatrix}=\lambda abc(1a+1b+1c+1)111 1b1b+11b 1c1c1c+1=λ \Rightarrow abc \left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c} + 1\right) \begin{vmatrix}1&1&1\\\ \frac{1}{b}&\frac{1}{b}+1&\frac{1}{b}\\\ \frac{1}{c}&\frac{1}{c}&\frac{1}{c} + 1\end{vmatrix} = \lambda abc(1)111 1b1b+11b 1c1c1c+1=λ \Rightarrow abc\left(1\right) \begin{vmatrix}1&1&1\\\ \frac{1}{b}&\frac{1}{b}+1&\frac{1}{b}\\\ \frac{1}{c}&\frac{1}{c}&\frac{1}{c} + 1\end{vmatrix} = \lambda