Solveeit Logo

Question

Question: If \[|a| < 1\] and \[|b| < 1\] then \[a(a + b) + {a^2}({a^2} + {b^2}) + {a^3}({a^3} + {b^3}) + ........

If a<1|a| < 1 and b<1|b| < 1 then a(a+b)+a2(a2+b2)+a3(a3+b3)+..........a(a + b) + {a^2}({a^2} + {b^2}) + {a^3}({a^3} + {b^3}) + .......... up to \infty is
A. b21b2+ab1ab\dfrac{{{b^2}}}{{1 - {b^2}}} + \dfrac{{ab}}{{1 - ab}}
B. 11a2+ab1ab\dfrac{1}{{1 - {a^2}}} + \dfrac{{ab}}{{1 - ab}}
C. 11a2+ab1ab\dfrac{1}{{1 - {a^2}}} + \dfrac{{ab}}{{1 - ab}}
D. a21a2+ab1ab\dfrac{{{a^2}}}{{1 - {a^2}}} + \dfrac{{ab}}{{1 - ab}}

Explanation

Solution

Hint : We express the given series in summation forms and we simplify this. After simplifying we again we expand the summation into series form. We obtain a series which are in geometric progression. We know the sum of infinite terms in geometric series is S=a(1r){S_\infty } = \dfrac{a}{{(1 - r)}} , ‘a’ is the first term and ‘r’ is the common ratio.

Complete step-by-step answer :
We have a(a+b)+a2(a2+b2)+a3(a3+b3)+.......... - - - - - - - (1)a(a + b) + {a^2}({a^2} + {b^2}) + {a^3}({a^3} + {b^3}) + ..........\infty {\text{ - - - - - - - (1)}}
Now we can express series (1) in summation form that is,
S=n=1an(an+bn)\Rightarrow S = \sum\limits_{n = 1}^\infty {{a^n}({a^n} + {b^n})}
Now multiplying with in the summation,
S=n=1(an.an+anbn)\Rightarrow S = \sum\limits_{n = 1}^\infty {({a^n}.{a^n} + {a^n}{b^n})}
We know an.am=an+m{a^n}.{a^m} = {a^{n + m}} , we get:
S=n=1(an+n+anbn)\Rightarrow S = \sum\limits_{n = 1}^\infty {({a^{n + n}} + {a^n}{b^n})}
We know anbn=(ab)n{a^n}{b^n} = {(ab)^n} , we get:
S=n=1(a2n+(ab)n)\Rightarrow S = \sum\limits_{n = 1}^\infty {\left( {{a^{2n}} + {{\left( {ab} \right)}^n}} \right)}
Expanding the summation, we have:
S=n=1(a2n)+n=1(ab)n - - - - - - (2)\Rightarrow S = \sum\limits_{n = 1}^\infty {\left( {{a^{2n}}} \right)} + \sum\limits_{n = 1}^\infty {{{\left( {ab} \right)}^n}} {\text{ - - - - - - (2)}}
Now we express the each summation in series form we have,
Now, n=1(a2n)=(a2+a4+a6+........+)\sum\limits_{n = 1}^\infty {\left( {{a^{2n}}} \right)} = \left( {{a^2} + {a^4} + {a^6} + ........ + \infty } \right)
We can see that the series are in geometric progression,
Common ratio r=a2r = {a^2} and first term is a=a2a = {a^2} .
Now the sum of infinite terms in geometric series is S=a(1r){S_\infty } = \dfrac{a}{{(1 - r)}}
Then n=1(a2n)=S=a21a2 - - - - - - - (3) \Rightarrow \sum\limits_{n = 1}^\infty {\left( {{a^{2n}}} \right)} = {S_\infty } = \dfrac{{{a^2}}}{{1 - {a^2}}}{\text{ - - - - - - - (3)}}
Now, n=1(ab)n=(ab+(ab)2+(ab)3+........+)\sum\limits_{n = 1}^\infty {{{\left( {ab} \right)}^n}} = \left( {ab + {{(ab)}^2} + {{(ab)}^3} + ........ + \infty } \right)
Similarly, this series is also in geometric progression,
Common ratio r=abr = ab and first term is a=aba = ab .
Now the sum of infinite terms in geometric series is S=a(1r){S_\infty } = \dfrac{a}{{(1 - r)}}
n=1(ab)n=S=ab1ab - - - - - (4)\Rightarrow \sum\limits_{n = 1}^\infty {{{\left( {ab} \right)}^n}} = {S_\infty } = \dfrac{{ab}}{{1 - ab}}{\text{ - - - - - (4)}}
Now substituting equation (3) and (4) in equation (2) we have,
S=a21a2+ab1ab\Rightarrow S = \dfrac{{{a^2}}}{{1 - {a^2}}} + \dfrac{{ab}}{{1 - ab}}
So, the correct answer is “Option D”.

Note : In geometric progression the common ratio is given by r=anan1r = \dfrac{{{a_n}}}{{{a_{n - 1}}}} . In arithmetic progression we take the common difference of adjacent pairs d=anan1d = {a_n} - {a_{n - 1}} . In the given series if we have common differences then it is in arithmetic progression. If the given series have a common ratio then it is in geometric progression. Sum of ‘n’ terms in arithmetic progression is Sn=n2[2a+(n1)d]{S_n} = \dfrac{n}{2}\left[ {2a + (n - 1)d} \right] .