Solveeit Logo

Question

Physics Question on Motion in a plane

If a1a_1 and a2a_2 are two non-collinear unit vectors and if a1+a2=3|a_1 + a_2| = \sqrt3 ,then the value of (a1a).(2a1+a2)(a_1 - a).(2a_1 + a_2) is

A

2

B

32\frac{3}{2}

C

12\frac{1}{2}

D

1

Answer

12\frac{1}{2}

Explanation

Solution

Since, a1a_1 and a2a_2 are non-collinear a1=a2=1\therefore a_1 = a_2 = 1 and a1+a2=3 |a_1 + a_2| = \sqrt3 a12+a22+2a1a2cosθ=(3)2\Rightarrow a_1^2 + a_2^2 + 2 a_1 a_2 \, \cos \, \theta = (\sqrt 3)^2 1+1+2cosθ=3cosθ=12\Rightarrow 1 + 1 + 2\, \cos \, \theta = 3 \, \Rightarrow \, \cos \, \theta = \frac{1}{2} Now (a1+a2).(2a1+a2)(a_1 + a_2). (2 a_1 + a_2) 20mm=2a12a22a1a2cosθ=2112=1220mm = 2 a_1^2 - a_2^2 - a_1 a_2 \, \cos \, \theta = 2 -1 - \frac{1}{2} = \frac{1}{2}