Solveeit Logo

Question

Question: If \[{a_1},{a_2}, \ldots \ldots ,{a_n}\] are positive real numbers whose product is a fixed number \...

If a1,a2,,an{a_1},{a_2}, \ldots \ldots ,{a_n} are positive real numbers whose product is a fixed number cc, then the minimum value of a1+a2++an1+2an{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n} is
(a) n(2c)1/nn{\left( {2c} \right)^{1/n}}
(b) (n+1)c1/n\left( {n + 1} \right){c^{1/n}}
(c) 2nc1/n2n{c^{1/n}}
(d) (n+1)(2c)1/n\left( {n + 1} \right){\left( {2c} \right)^{1/n}}

Explanation

Solution

Here, we will first find the arithmetic mean and geometric mean of the terms in the expression. Then, we will use the relation between arithmetic mean and geometric mean to form an inequation. Finally, we will use the given information to find the minimum value of the expression a1+a2++an1+2an{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}.

Formula Used:
We will use the following formulas:
The arithmetic mean of the nn numbers a1,a2,,an{a_1},{a_2}, \ldots \ldots ,{a_n} is given by the formula A.M.=a1+a2++an1+annA.M. = \dfrac{{{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + {a_n}}}{n}.
The geometric mean of the nn numbers a1,a2,,an{a_1},{a_2}, \ldots \ldots ,{a_n} is given by the formula G.M.=a1a2an1annG.M. = \sqrt[n]{{{a_1}{a_2} \ldots \ldots {a_{n - 1}}{a_n}}}.

Complete step-by-step answer:
We will use the formula for A.M. and G.M. to find the minimum value of a1+a2++an1+2an{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}.
The number of terms in the sum a1+a2++an1+2an{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n} is nn.
Therefore, using the formula A.M.=a1+a2++an1+annA.M. = \dfrac{{{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + {a_n}}}{n}, we get the arithmetic mean as
A.M.=a1+a2++an1+2annA.M. = \dfrac{{{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}}}{n}
The number of terms in the sum a1+a2++an1+2an{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n} is nn.
Therefore, using the formula G.M.=a1a2an1annG.M. = \sqrt[n]{{{a_1}{a_2} \ldots \ldots {a_{n - 1}}{a_n}}}, we get the geometric mean as
G.M.=(a1a2an12an)1/nG.M. = {\left( {{a_1}{a_2} \ldots \ldots {a_{n - 1}}2{a_n}} \right)^{1/n}}
Now, we know that the arithmetic mean is always greater than or equal to the geometric mean.
Therefore, we get
A.M.G.M.\Rightarrow A.M. \ge G.M.
Substituting A.M.=a1+a2++an1+2annA.M. = \dfrac{{{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}}}{n} and G.M.=(a1a2an12an)1/nG.M. = {\left( {{a_1}{a_2} \ldots \ldots {a_{n - 1}}2{a_n}} \right)^{1/n}} in the inequation, we get
a1+a2++an1+2ann(a1a2an12an)1/n\Rightarrow \dfrac{{{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}}}{n} \ge {\left( {{a_1}{a_2} \ldots \ldots {a_{n - 1}}2{a_n}} \right)^{1/n}}
Rewriting the inequation, we get
a1+a2++an1+2ann(2a1a2an1an)1/n\Rightarrow \dfrac{{{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}}}{n} \ge {\left( {2{a_1}{a_2} \ldots \ldots {a_{n - 1}}{a_n}} \right)^{1/n}}
It is given that the number a1,a2,,an{a_1},{a_2}, \ldots \ldots ,{a_n} are positive real numbers whose product is a fixed number cc.
Therefore, we get
a1a2an1an=c{a_1}{a_2} \ldots \ldots {a_{n - 1}}{a_n} = c
Substituting a1a2an1an=c{a_1}{a_2} \ldots \ldots {a_{n - 1}}{a_n} = c in the inequation a1+a2++an1+2ann(2a1a2an1an)1/n\dfrac{{{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}}}{n} \ge {\left( {2{a_1}{a_2} \ldots \ldots {a_{n - 1}}{a_n}} \right)^{1/n}}, we get
a1+a2++an1+2ann(2c)1/n\Rightarrow \dfrac{{{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}}}{n} \ge {\left( {2c} \right)^{1/n}}
Multiplying both sides by nn, we get
n(a1+a2++an1+2ann)n(2c)1/n\Rightarrow n\left( {\dfrac{{{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}}}{n}} \right) \ge n{\left( {2c} \right)^{1/n}}
Thus, we get
a1+a2++an1+2ann(2c)1/n\Rightarrow {a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n} \ge n{\left( {2c} \right)^{1/n}}
Therefore, the value of the expression a1+a2++an1+2an{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n} is greater than or equal to n(2c)1/nn{\left( {2c} \right)^{1/n}}.
Thus, the minimum value of the expression a1+a2++an1+2an{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n} is n(2c)1/nn{\left( {2c} \right)^{1/n}}.
The correct option is option (a).

Note: We multiplied both sides of the inequation a1+a2++an1+2ann(2c)1/n\dfrac{{{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}}}{n} \ge {\left( {2c} \right)^{1/n}} by nn. Since the number of terms cannot be negative, nn is a positive integer. Therefore, we could multiply both sides of the inequation by nn without changing the sign of the inequation.
Here we used geometric mean and arithmetic mean to solve the question. These are the two types of mean and the third type of mean is harmonic mean.