Solveeit Logo

Question

Question: If \[{{A}_{1}},{{A}_{2}};{{G}_{1}},{{G}_{2}}\] and \[{{H}_{1}},{{H}_{2}}\] be two A.Ms, G.Ms and H.M...

If A1,A2;G1,G2{{A}_{1}},{{A}_{2}};{{G}_{1}},{{G}_{2}} and H1,H2{{H}_{1}},{{H}_{2}} be two A.Ms, G.Ms and H.Ms, between two quantities a and b then. Prove that, A1H2=A2H1=G1G2=ab{{A}_{1}}{{H}_{2}}={{A}_{2}}{{H}_{1}}={{G}_{1}}{{G}_{2}}=ab.

Explanation

Solution

Hint:Find the equation of nth{{n}^{th}} term of AP, HP and GP. Thus find the values A1,A2,H1,H2,G1{{A}_{1}},{{A}_{2}},{{H}_{1}},{{H}_{2}},{{G}_{1}} and G2{{G}_{2}}. Thus find A1H2,A2H,G1G2{{A}_{1}}{{H}_{2}},{{A}_{2}}H,{{G}_{1}}{{G}_{2}} and their value should be equal to ab.

Complete step-by-step answer:

From the equation A1,A2{{A}_{1}},{{A}_{2}} are the A.Ms, H1{{H}_{1}} and H2{{H}_{2}} are the H.Ms and G1,G2{{G}_{1}},{{G}_{2}} are G.MsG.Ms, where A.M means arithmetic mean, G.M means geometric mean and H.M means harmonic mean.
We know that the nth{{n}^{th}} term of an AP is given by,
Tn=a+(n1)d{{T}_{n}}=a+\left( n-1 \right)d
Where a is the first term and d is the common difference.
Similarly, the nth{{n}^{th}} term of a GP is given by
Tn=arn1{{T}_{n}}=a{{r}^{n-1}}, where r = common ratio.
We have been given two quantities a and b.
Hence, we can say that a,A1,A2,ba,{{A}_{1}},{{A}_{2}},b are in AP.
Hence there are 4 terms i.e. n = 4.
Tn=a+(n1)d{{T}_{n}}=a+\left( n-1 \right)d
Put, Tn=b{{T}_{n}}=b and n=4n=4 in the above expression.

& \therefore b=a+\left( 4-1 \right)d \\\ & b=a+3d,a=b-3d \\\ & b-a=3d \\\ & d=\dfrac{b-a}{3} \\\ \end{aligned}$$ Hence we got the common difference (d) of the AP as $$\left( \dfrac{b-a}{3} \right)$$. Now the first term here is a $${{2}^{nd}}$$ term is $${{A}_{1}}$$. $$\begin{aligned} & \therefore {{A}_{1}}=a+d=a+\left( \dfrac{b-a}{3} \right) \\\ & {{A}_{1}}=\dfrac{3a+b-a}{3}=\dfrac{2a+b}{3} \\\ \end{aligned}$$ Hence, we got the $${{2}^{nd}}$$ term, $${{A}_{1}}=\dfrac{2a+b}{3}$$. Similarly, $${{3}^{rd}}$$ term, $${{A}_{2}}=a+2d$$ $$\begin{aligned} & {{A}_{2}}=a+2\left( \dfrac{b-a}{3} \right)=\dfrac{3a+2b-2a}{3} \\\ & {{A}_{2}}=\dfrac{a+2b}{3} \\\ \end{aligned}$$ $$\therefore $$ The $${{3}^{rd}}$$ term of AP, $${{A}_{2}}=\dfrac{a+2b}{3}$$. Hence, $$a,{{A}_{1}},{{A}_{2}},b$$ are in AP. $$\begin{aligned} & a=b-3d \\\ & {{A}_{1}}=\dfrac{2a+b}{3} \\\ & {{A}_{2}}=\dfrac{a+2b}{3} \\\ \end{aligned}$$ Again we have $$a,{{G}_{1}},{{G}_{2}},b$$ in GP. $${{T}_{n}}=a{{r}^{n-1}}$$, put n = 4 and $${{T}_{n}}=b$$. $$\begin{aligned} & \therefore b=a{{r}^{4-1}}=a{{r}^{3}} \\\ & b=a{{r}^{3}} \\\ & {{r}^{3}}=\dfrac{b}{a}\Rightarrow r={{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}} \\\ \end{aligned}$$ Hence, we got the common difference of GP as $${{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}}$$. Now, $${{G}_{1}}=ar$$, which is the $${{2}^{nd}}$$ term. $$\begin{aligned} & {{G}_{1}}=a{{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}}=\dfrac{a}{{{a}^{\dfrac{1}{3}}}}.{{b}^{\dfrac{1}{3}}}=\left( {{a}^{1-\dfrac{1}{3}}} \right).{{b}^{\dfrac{1}{3}}} \\\ & {{G}_{1}}={{a}^{\dfrac{2}{3}}}.{{b}^{\dfrac{1}{3}}} \\\ \end{aligned}$$ Hence, we got the $${{2}^{nd}}$$ term of GP as, $${{G}_{1}}={{a}^{\dfrac{2}{3}}}.{{b}^{\dfrac{1}{3}}}$$. Similarly, $${{3}^{rd}}$$ term, $${{G}_{2}}=a{{r}^{2}}$$ $$\begin{aligned} & {{G}_{2}}=a{{\left( \dfrac{b}{a} \right)}^{\dfrac{2}{3}}}=\dfrac{a}{{{a}^{\dfrac{2}{3}}}}.{{b}^{\dfrac{2}{3}}} \\\ & {{G}_{2}}=\left( {{a}^{1-\dfrac{2}{3}}} \right).{{b}^{\dfrac{2}{3}}}={{a}^{\dfrac{1}{3}}}.{{b}^{\dfrac{2}{3}}} \\\ \end{aligned}$$ $$\therefore {{2}^{nd}}$$ term of GP, $${{G}_{2}}={{a}^{\dfrac{1}{3}}}.{{b}^{\dfrac{2}{3}}}$$. Hence, $$a,{{G}_{1}},{{G}_{2}},b$$ are in GP. $$\begin{aligned} & a=\dfrac{b}{{{r}^{3}}} \\\ & {{G}_{1}}={{a}^{\dfrac{2}{3}}}.{{b}^{\dfrac{1}{3}}} \\\ & {{G}_{2}}={{a}^{\dfrac{1}{3}}}.{{b}^{\dfrac{2}{3}}} \\\ \end{aligned}$$ Now we have $$a,{{H}_{1}},{{H}_{2}},b$$ in H.P. Hence, HP $$={{\left( \dfrac{1}{n} \right)}^{th}}$$ term of AP. Put, $${{T}_{n}}=b$$ and n = 4. $$\begin{aligned} & \dfrac{1}{b}=\dfrac{1}{a}+\left( 4-1 \right)d \\\ & \dfrac{1}{b}=\dfrac{1}{a}+3d\Rightarrow 3d=\dfrac{1}{b}-\dfrac{1}{a}=\dfrac{a-b}{ab} \\\ & \therefore d=\dfrac{a-b}{3ab} \\\ \end{aligned}$$ Now to get the $${{2}^{nd}}$$ term $${{H}_{1}}$$, $$\begin{aligned} & \dfrac{1}{{{H}_{1}}}=\dfrac{1}{a}+d=\dfrac{1}{a}+\dfrac{a-b}{3ab} \\\ & \dfrac{1}{{{H}_{1}}}=\dfrac{1}{a}+\dfrac{1}{3b}-\dfrac{1}{3a} \\\ & \dfrac{1}{{{H}_{1}}}=\dfrac{3b+a-b}{3ab}=\dfrac{a+2b}{3ab} \\\ & \therefore {{H}_{1}}=\dfrac{3ab}{a+2b} \\\ \end{aligned}$$ Similarly, $${{3}^{rd}}$$ term of H.M $${{H}_{2}}$$ $$\begin{aligned} & \dfrac{1}{{{H}_{2}}}=\dfrac{1}{a}+2d=\dfrac{1}{a}+\dfrac{2}{3b}-\dfrac{2}{3a} \\\ & \dfrac{1}{{{H}_{2}}}=\dfrac{3b+2a-2b}{3ab}=\dfrac{b+2a}{3ab} \\\ & \therefore {{H}_{2}}=\dfrac{3ab}{2a+b} \\\ \end{aligned}$$ Now let us find the value of $${{A}_{1}}{{H}_{2}},{{A}_{2}}{{H}_{2}}$$ and $${{G}_{1}},{{G}_{2}}$$. $$\begin{aligned} & {{A}_{1}}{{H}_{2}}=\left( \dfrac{2a+b}{3} \right)\times \left( \dfrac{3ab}{2a+b} \right)=ab \\\ & {{A}_{2}}{{H}_{1}}=\left( \dfrac{a+2b}{3} \right)\times \left( \dfrac{3ab}{a+2b} \right)=ab \\\ & {{G}_{1}}{{G}_{2}}={{a}^{\dfrac{2}{3}}}{{b}^{\dfrac{1}{3}}}\times {{a}^{\dfrac{1}{3}}}{{b}^{\dfrac{2}{3}}}={{a}^{\left( \dfrac{2}{3}+\dfrac{1}{3} \right)}}.{{b}^{\left( \dfrac{1}{3}+\dfrac{2}{3} \right)}} \\\ & {{G}_{1}}{{G}_{2}}={{a}^{1}}.{{b}^{1}}=ab \\\ \end{aligned}$$ Hence from the above, we can say that, $${{A}_{1}}{{H}_{2}}={{A}_{2}}{{H}_{1}}={{G}_{1}}{{G}_{2}}=ab$$ Hence, we have proved the expression. Note: To solve a question like this you should know the basics of AP, GP and HP. Thus find the terms to prove the expression that have been given. Remember the formula to find the $${{n}^{th}}$$ term in AP, GP and HP.