Solveeit Logo

Question

Question: If \({{A}_{1}},{{A}_{2}}\) be two arithmetic means and \({{G}_{1}},{{G}_{2}}\) be two geometric mean...

If A1,A2{{A}_{1}},{{A}_{2}} be two arithmetic means and G1,G2{{G}_{1}},{{G}_{2}} be two geometric means between two positive numbers aa and bb, then A1+A2G1G2\dfrac{{{A}_{1}}+{{A}_{2}}}{{{G}_{1}}{{G}_{2}}}
A)aba+bA)\dfrac{ab}{a+b}
B)aba+bB)\dfrac{ab}{a+b}
C)a+babC)\dfrac{a+b}{ab}
D)a+babD)\dfrac{a+b}{ab}

Explanation

Solution

To solve this question we need to know about the Arithmetic means and geometric means. To solve the problem we will take an assumption to find the geometric means G1,G2{{G}_{1}},{{G}_{2}}and will then calculate for A1,A2{{A}_{1}},{{A}_{2}} .

Complete step by step answer:
The question ask us to find the value for A1+A2G1G2\dfrac{{{A}_{1}}+{{A}_{2}}}{{{G}_{1}}{{G}_{2}}}, if A1,A2{{A}_{1}},{{A}_{2}} be two arithmetic means and G1,G2{{G}_{1}},{{G}_{2}} be two geometric means between two positive numbers aa and bb. To solve this problem we first find the geometric means and the arithmetic mean. For solving the geometric mean we will make an assumption to make the solving easier, where we will consider a=p3a={{p}^{3}} and b=q3b={{q}^{3}}. The product of the geometric mean when a series will look like a,G1,G2,ba,{{G}_{1}},{{G}_{2}},b which will as per the assumption bep3,G1,G2,q3{{p}^{3}},{{G}_{1}},{{G}_{2}},{{q}^{3}}. So G1=p2q{{G}_{1}}={{p}^{2}}q while G1=pq2{{G}_{1}}=p{{q}^{2}}. So the product of the two means will be:
G1G2=p2q×pq2\Rightarrow {{G}_{1}}{{G}_{2}}={{p}^{2}}q\times p{{q}^{2}}
On multiplying the expression we get:
G1G2=p3q3\Rightarrow {{G}_{1}}{{G}_{2}}={{p}^{3}}{{q}^{3}}
On substituting p,qp,q from aa and bb, we get:
G1G2=ab\Rightarrow {{G}_{1}}{{G}_{2}}=ab

The second step is to find the value for the arithmetic mean expression. The series is a,A1,A2,ba,{{A}_{1}},{{A}_{2}},b. Now considering the bb to be the last term and aa to be the first term. The value of bb in terms of aa will be:
b=a+3d\Rightarrow b=a+3d
We will rearrange the expression to calculate for dd. On doing this we get:
b=a+3d\Rightarrow b=a+3d
d=ba3\Rightarrow d=\dfrac{b-a}{3}
Now on applying the same formula to find the value for A1,A2{{A}_{1}},{{A}_{2}} in terms of aa and bbwe get:
A1=a+d\Rightarrow {{A}_{1}}=a+d
On substituting the value of dd we get:
A1=a+ba3\Rightarrow {{A}_{1}}=a+\dfrac{b-a}{3}
A1=3a+ba3\Rightarrow {{A}_{1}}=\dfrac{3a+b-a}{3}
A1=2a+b3\Rightarrow {{A}_{1}}=\dfrac{2a+b}{3}
In the similar manner we will find the value of A2{{A}_{2}}. The formula will be:
A2=a+2d\Rightarrow {{A}_{2}}=a+2d
On substituting the value of dd we get:
A2=a+2(ba3)\Rightarrow {{A}_{2}}=a+2\left( \dfrac{b-a}{3} \right)
A2=3a+2b2a3\Rightarrow {{A}_{2}}=\dfrac{3a+2b-2a}{3}
A2=a+2b3\Rightarrow {{A}_{2}}=\dfrac{a+2b}{3}
The value of the sum of arithmetic mean will be:
A1+A2=2a+b3+a+2b3\Rightarrow {{A}_{1}}+{{A}_{2}}=\dfrac{2a+b}{3}+\dfrac{a+2b}{3}
A1+A2=3a+3b3\Rightarrow {{A}_{1}}+{{A}_{2}}=\dfrac{3a+3b}{3}
A1+A2=a+b\Rightarrow {{A}_{1}}+{{A}_{2}}=a+b
Now the value of the expression A1+A2G1G2\dfrac{{{A}_{1}}+{{A}_{2}}}{{{G}_{1}}{{G}_{2}}}will be:
A1+A2G1G2=a+bab\Rightarrow \dfrac{{{A}_{1}}+{{A}_{2}}}{{{G}_{1}}{{G}_{2}}}=\dfrac{a+b}{ab}
\therefore The value of A1+A2G1G2\dfrac{{{A}_{1}}+{{A}_{2}}}{{{G}_{1}}{{G}_{2}}}is C)a+babC)\dfrac{a+b}{ab}.

So, the correct answer is “Option C”.

Note: We need to remember when we talk of the mean for a particular series then the mean is also considered as the part of the series. For example if A1,A2A3,A4{{A}_{1}},{{A}_{2}}{{A}_{3}},{{A}_{4}} are the arithmetic means between aa and bb, then a,A1,A2A3,A4,ba,{{A}_{1}},{{A}_{2}}{{A}_{3}},{{A}_{4}},b is in the arithmetic progression. Similar rule lies for the geometric mean also.