Question
Mathematics Question on Series
If a1,a2,...,an are positive real numbers whose product is a fixed number c, then the minimum value of a1+a2+...+an−1+2an is
A
n(2c)1/n
B
(n+1)c1/n
C
2cn1/n
D
(n+1)(2c)1/n
Answer
n(2c)1/n
Explanation
Solution
Given, a1,a2,...,an=c
\Rightarrow \, \, \, a_1\, a_2\, a_3...(a_{n-1})(2a_n) = 2c\hspace40mm ...(i)
∴na1+a2+a3+...+2an≥(a1.a2.a3...2an)1/n
\hspace70mm [using\, AM \ge GM]
\Rightarrow \, \, \, a_1+ a_2+ a_3+...+2a_n \ge \, n(2c)^{1/n} \hspace5mm [from\, E (i)]
⇒ Minimum value of
\hspace30mm a_1+ a_2+ a_3+...+2a_n = \, n(2c)^{1/n}