Solveeit Logo

Question

Mathematics Question on Series

If a1,a2,...,ana_1,a_2,...,a_n are positive real numbers whose product is a fixed number c, then the minimum value of a1+a2+...+an1+2an a_1 + a_2 +...+ a_{n-1}+2a_n is

A

n(2c)1/nn\, (2c)^{1/n}

B

(n+1)c1/n(n\, +1) c^{1/n}

C

2cn1/n 2cn^{1/n}

D

(n+1)(2c)1/n(n\, +1) (2c)^{1/n}

Answer

n(2c)1/nn\, (2c)^{1/n}

Explanation

Solution

Given, a1,a2,...,an=ca_1, a_2,...,a_n = c
\Rightarrow \, \, \, a_1\, a_2\, a_3...(a_{n-1})(2a_n) = 2c\hspace40mm ...(i)
a1+a2+a3+...+2ann(a1.a2.a3...2an)1/n\therefore \, \, \, \, \frac{a_1\, + \, a_2\, +\, a_3\, +...+2a_n}{n} \ge (a_1.a_2.a_3...2a_n)^{1/n}
\hspace70mm [using\, AM \ge GM]
\Rightarrow \, \, \, a_1+ a_2+ a_3+...+2a_n \ge \, n(2c)^{1/n} \hspace5mm [from\, E (i)]
\Rightarrow \, \, \, Minimum value of
\hspace30mm a_1+ a_2+ a_3+...+2a_n = \, n(2c)^{1/n}