Solveeit Logo

Question

Mathematics Question on Sequence and series

If a1,a2,.......ana_1,a_2,.......a_n are in arithmetic progression with common difference d>nd>n, then find limit limndn(1a1+a2)+1a2+a3+.......+1an+an1)\lim_{n \to \infty}\sqrt{\frac{d}{n}}(\frac{1}{\sqrt{a_1}+\sqrt{a_2}})+\frac{1}{\sqrt{a_2}+\sqrt{a_3}}+.......+\frac{1}{\sqrt{a_n}+\sqrt{a_{n-1}}}) is____.

Answer

limndn(1a2a1+1a3a2+........+1anan1)\lim_{n \to \infty}\sqrt{\frac{d}{n}}(\frac{1}{\sqrt{a_2}-\sqrt{a_1}}+\frac{1}{\sqrt{a_3}-\sqrt{a_2}}+........+\frac{1}{\sqrt{a_n}-\sqrt{a_{n-1}}})
=1ddn(ana1)=\frac{1}{d} \sqrt{\frac{d}{n}}(\sqrt{a_n}-\sqrt{a_1})
=1ddn(a1+nd)12= \frac{1}{d}\sqrt{\frac{d}{n}}(a_1+nd)^\frac{1}{2}
=1ddnn(d+a1n)12= \frac{1}{d}\sqrt{\frac{d}{n}}\sqrt{n}(d+\frac{a_1}{n})^{\frac{1}{2}}
=1dd×d(1+a1nd)12= \frac{1}{d}\sqrt{d}\times\sqrt{d}(1+\frac{a_1}{nd})^{\frac{1}{2}}
=1=1