Solveeit Logo

Question

Question: If \( {a_1},{a_2},...,{a_n} \) are in arithmetic progression, where \( {a_i} > 0 \) for all \[\;i\] ...

If a1,a2,...,an{a_1},{a_2},...,{a_n} are in arithmetic progression, where ai>0{a_i} > 0 for all   i\;i . Then,
1a1+a2+1a2+a3+.....+1an1+an=\dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} =
A. n2(n+1)2\dfrac{{{n^2}\left( {n + 1} \right)}}{2}
B. (n1)a1+an\dfrac{{\left( {n - 1} \right)}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }}
C. n(n1)2\dfrac{{n\left( {n - 1} \right)}}{2}
D. None of these

Explanation

Solution

An arithmetic sequence or arithmetic progression is defined as a mathematical sequence in which the difference between two consecutive terms is always a constant. An arithmetic progression is abbreviated as A.P. We also need to learn the three important terms, which are as follows.
A common difference (d)\left( d \right) is the difference between the first two terms.
nth{n^{th}} term (an)({a_n})
And, Sum of the first nn terms (Sn)({S_n})
Formula to be used:
a) The formula to calculate the nth{n^{th}} term of the given arithmetic progression is as follows.
an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d
Where, aa denotes the first term, dd denotes the common difference, nn is the number of terms, and an{a_n} is the nth{n^{th}} term of the given arithmetic progression.
b) We know that an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d
an=a+(n1)daan=(n1)d{a_n} = a + \left( {n - 1} \right)d \Rightarrow a - {a_n} = - \left( {n - 1} \right)d
c)) (a+b)(ab)=a2b2\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}

Complete step by step answer:
We are given that a1,a2,...,an{a_1},{a_2},...,{a_n} are in arithmetic progression, where ai>0{a_i} > 0 for all   i\;i .
Hence, the common difference dd is given by a2a1  =a3a2=.=anan1  =d{a_2} - {a_1}\; = {a_3} - {a_2} = \ldots . = {a_n} - {a_{n - 1}}\; = d
Multiplying by a minus sign, we get
a1a2  =a2a3=.=an1an  =d{a_1} - {a_2}\; = {a_2} - {a_3} = \ldots . = {a_{n - 1}} - {a_n}\; = - d ………. (1)\left( 1 \right)
Now, we need to calculate 1a1+a2+1a2+a3+.....+1an1+an\dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }}
We shall rationalize the denominator of the above expression.
1a1+a2+1a2+a3+.....+1an1+an=1a1+a2×a1a2a1a2+1a2+a3×a2a3a2a3+.....+1an1+an×an1anan1an\dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} \times \dfrac{{\sqrt {{a_1}} - \sqrt {{a_2}} }}{{\sqrt {{a_1}} - \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} \times \dfrac{{\sqrt {{a_2}} - \sqrt {{a_3}} }}{{\sqrt {{a_2}} - \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} \times \dfrac{{\sqrt {{a_{n - 1}}} - \sqrt {{a_n}} }}{{\sqrt {{a_{n - 1}}} - \sqrt {{a_n}} }} =a1a2(a1+a2)(a1a2)+a2a3(a2+a3)(a2a3)+.....+an1an(an1+an)(an1an) = \dfrac{{\sqrt {{a_1}} - \sqrt {{a_2}} }}{{\left( {\sqrt {{a_1}} + \sqrt {{a_2}} } \right)\left( {\sqrt {{a_1}} - \sqrt {{a_2}} } \right)}} + \dfrac{{\sqrt {{a_2}} - \sqrt {{a_3}} }}{{\left( {\sqrt {{a_2}} + \sqrt {{a_3}} } \right)\left( {\sqrt {{a_2}} - \sqrt {{a_3}} } \right)}} + ..... + \dfrac{{\sqrt {{a_{n - 1}}} - \sqrt {{a_n}} }}{{\left( {\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} } \right)\left( {\sqrt {{a_{n - 1}}} - \sqrt {{a_n}} } \right)}}
Here, we shall apply the formula (a+b)(ab)=a2b2\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2} on the denominators of the right-hand side equation.
1a1+a2+1a2+a3+.....+1an1+an=a1a2(a1)2(a2)2+a2a3(a2)2(a3)2+.....+an1an(an1)2(an)2\dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{{\sqrt {{a_1}} - \sqrt {{a_2}} }}{{{{\left( {\sqrt {{a_1}} } \right)}^2} - {{\left( {\sqrt {{a_2}} } \right)}^2}}} + \dfrac{{\sqrt {{a_2}} - \sqrt {{a_3}} }}{{{{\left( {\sqrt {{a_2}} } \right)}^2} - {{\left( {\sqrt {{a_3}} } \right)}^2}}} + ..... + \dfrac{{\sqrt {{a_{n - 1}}} - \sqrt {{a_n}} }}{{{{\left( {\sqrt {{a_{n - 1}}} } \right)}^2} - {{\left( {\sqrt {{a_n}} } \right)}^2}}} =a1a2a1a2+a2a3a2a3+.....+an1anan1an = \dfrac{{\sqrt {{a_1}} - \sqrt {{a_2}} }}{{{a_1} - {a_2}}} + \dfrac{{\sqrt {{a_2}} - \sqrt {{a_3}} }}{{{a_2} - {a_3}}} + ..... + \dfrac{{\sqrt {{a_{n - 1}}} - \sqrt {{a_n}} }}{{{a_{n - 1}} - {a_n}}}
Now, we shall apply the equation (1)\left( 1 \right) above.
1a1+a2+1a2+a3+.....+1an1+an=a1a2d+a2a3d+.....+an1and\Rightarrow \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{{\sqrt {{a_1}} - \sqrt {{a_2}} }}{{ - d}} + \dfrac{{\sqrt {{a_2}} - \sqrt {{a_3}} }}{{ - d}} + ..... + \dfrac{{\sqrt {{a_{n - 1}}} - \sqrt {{a_n}} }}{{ - d}}
1a1+a2+1a2+a3+.....+1an1+an=1d(a1a2+a2a3+.....+an1an)\Rightarrow \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{1}{{ - d}}\left( {\sqrt {{a_1}} - \sqrt {{a_2}} + \sqrt {{a_2}} - \sqrt {{a_3}} + ..... + \sqrt {{a_{n - 1}}} - \sqrt {{a_n}} } \right)
=1d(a1an)= \dfrac{1}{{ - d}}\left( {\sqrt {{a_1}} - \sqrt {{a_n}} } \right)
We shall rationalize the numerator of the above expression.
1a1+a2+1a2+a3+.....+1an1+an=1d(a1an×a1+ana1+an)\Rightarrow \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{1}{{ - d}}\left( {\sqrt {{a_1}} - \sqrt {{a_n}} \times \dfrac{{\sqrt {{a_1}} + \sqrt {{a_n}} }}{{\sqrt {{a_1}} + \sqrt {{a_n}} }}} \right)
Here, we shall apply the formula (a+b)(ab)=a2b2\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2} on the numerators of the right-hand side equation.
1a1+a2+1a2+a3+.....+1an1+an=1d((a1)2(an)2a1+an)\Rightarrow \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{1}{{ - d}}\left( {\dfrac{{{{\left( {\sqrt {{a_1}} } \right)}^2} - {{\left( {\sqrt {{a_n}} } \right)}^2}}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }}} \right)
=1d(a1ana1+an)= \dfrac{1}{{ - d}}\left( {\dfrac{{{a_1} - {a_n}}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }}} \right) ……… (2)\left( 2 \right)
Applying the aan=(n1)da - {a_n} = - \left( {n - 1} \right)d formula in (2)\left( 2 \right) we get,
1a1+a2+1a2+a3+.....+1an1+an=1d((n1)da1+an)\Rightarrow \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{1}{{ - d}}\left( {\dfrac{{ - \left( {n - 1} \right)d}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }}} \right)
=(n1)a1+an= \dfrac{{\left( {n - 1} \right)}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }}
Hence, 1a1+a2+1a2+a3+.....+1an1+an=n1a1+an\dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{{n - 1}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }}

So, the correct answer is “Option B”.

Note: A common difference (d)\left( d \right) is the difference between the first two terms.
Hence, the common difference dd is given by a2a1  =a3a2=.=anan1  =d{a_2} - {a_1}\; = {a_3} - {a_2} = \ldots . = {a_n} - {a_{n - 1}}\; = d
Multiplying by a minus sign, we get
a1a2  =a2a3=.=an1an  =d{a_1} - {a_2}\; = {a_2} - {a_3} = \ldots . = {a_{n - 1}} - {a_n}\; = - d
We know that an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d
an=a+(n1)daan=(n1)d{a_n} = a + \left( {n - 1} \right)d \Rightarrow a - {a_n} = - \left( {n - 1} \right)d
These are the required formulae to obtain the answer. These are derived from the original formulae for our convenience.
Hence, 1a1+a2+1a2+a3+.....+1an1+an=n1a1+an\dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{{n - 1}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }}