Solveeit Logo

Question

Mathematics Question on Sequence and series

If a1,a2,.....,an{{a}_{1}},{{a}_{2}},.....,{{a}_{n}} are in AP with common difference d0,d\ne 0, then (sind)(\sin d) [seca1seca2+[\sec {{a}_{1}}\sec {{a}_{2}}+ seca2seca3+...+secan1secan]\sec {{a}_{2}}\sec {{a}_{3}}+...+\sec {{a}_{n-1}}\sec {{a}_{n}}] is equal to

A

cotancota1\cot {{a}_{n}}-\cot {{a}_{1}}

B

cota1cotan\cot {{a}_{1}}-\cot {{a}_{n}}

C

tanantana1\tan {{a}_{n}}-\tan {{a}_{1}}

D

tanantanan1\tan {{a}_{n}}-\tan {{a}_{n-1}}

Answer

tanantana1\tan {{a}_{n}}-\tan {{a}_{1}}

Explanation

Solution

Given, d=a2a1=a3a2=a4a3=.....d={{a}_{2}}-{{a}_{1}}={{a}_{3}}-{{a}_{2}}={{a}_{4}}-{{a}_{3}}=.....
=anan1={{a}_{n}}-{{a}_{n-1}}
\therefore (sind)[seca1seca2+seca2seca3+...(\sin d)[\sec {{a}_{1}}\sec {{a}_{2}}+\sec {{a}_{2}}\sec {{a}_{3}}+... +secan1secan]+\sec {{a}_{n-1}}\sec {{a}_{n}}]
=sindcosa1cosa2+sindcosa2cosa3+....=\frac{\sin d}{\cos {{a}_{1}}\cos {{a}_{2}}}+\frac{\sin d}{\cos {{a}_{2}}\cos {{a}_{3}}}+.... +sindcosan1cosan+\frac{\sin d}{\cos {{a}_{n-1}}\cos {{a}_{n}}}
=sin(a2a1)cosa1cosa2+sin(a3a2)cosa2cosa3+....=\frac{\sin ({{a}_{2}}-{{a}_{1}})}{\cos {{a}_{1}}\cos {{a}_{2}}}+\frac{\sin ({{a}_{3}}-{{a}_{2}})}{\cos {{a}_{2}}\cos {{a}_{3}}}+.... +sin(anan1)cosan1cosan+\frac{\sin ({{a}_{n}}-{{a}_{n-1}})}{\cos {{a}_{n-1}}\cos {{a}_{n}}}
=tana2tana1+tana3tana2+....=\tan {{a}_{2}}-\tan {{a}_{1}}+\tan {{a}_{3}}-\tan {{a}_{2}}+.... +tanantanan1+\tan {{a}_{n}}-\tan {{a}_{n-1}}
=tanantana1=\tan {{a}_{n}}-\tan {{a}_{1}}