Solveeit Logo

Question

Question: If \({{a}_{1}},{{a}_{2}},...,{{a}_{n}},{{a}_{n+1}},...\) are in G.P. and \({{a}_{i}}>0\text{ }\foral...

If a1,a2,...,an,an+1,...{{a}_{1}},{{a}_{2}},...,{{a}_{n}},{{a}_{n+1}},... are in G.P. and ai>0 i{{a}_{i}}>0\text{ }\forall i then loganlogan+2logan+4 logan+6logan+8logan+10 logan+12logan+14logan+16 \left| \begin{matrix} \log {{a}_{n}} & \log {{a}_{n+2}} & \log {{a}_{n+4}} \\\ \log {{a}_{n+6}} & \log {{a}_{n+8}} & \log {{a}_{n+10}} \\\ \log {{a}_{n+12}} & \log {{a}_{n+14}} & \log {{a}_{n+16}} \\\ \end{matrix} \right| is equal to
(a) 00
(b) nlogann\log {{a}_{n}}
(c) n(n+1)logann\left( n+1 \right)\log {{a}_{n}}
(d) none of these

Explanation

Solution

We should use the general form of nth term of a G.P. and substitute each term in that form. We can then simplify the determinant by using the logarithmic identity logam=mloga\log {{a}^{m}}=m\log a. We then need to use basic arithmetic operations on the determinant to find its value.

Complete step by step answer:
We have the following determinant,
Det = loganlogan+2logan+4 logan+6logan+8logan+10 logan+12logan+14logan+16 \left| \begin{matrix} \log {{a}_{n}} & \log {{a}_{n+2}} & \log {{a}_{n+4}} \\\ \log {{a}_{n+6}} & \log {{a}_{n+8}} & \log {{a}_{n+10}} \\\ \log {{a}_{n+12}} & \log {{a}_{n+14}} & \log {{a}_{n+16}} \\\ \end{matrix} \right|
Let us try to evaluate the following determinant.
Let a be the first term, and r be the common difference of the geometric progression.
Then the nth term of this G.P. is arn1a{{r}^{n-1}} .
We can now replace the value of each term in the determinant.
Det = logarn1logarn+1logarn+3 logarn+5logarn+7logarn+9 logarn+11logarn+13logarn+15 \left| \begin{matrix} \log a{{r}^{n-1}} & \log a{{r}^{n+1}} & \log a{{r}^{n+3}} \\\ \log a{{r}^{n+5}} & \log a{{r}^{n+7}} & \log a{{r}^{n+9}} \\\ \log a{{r}^{n+11}} & \log a{{r}^{n+13}} & \log a{{r}^{n+15}} \\\ \end{matrix} \right|
We can simplify this determinant as
Det = logrn1logrn+1logrn+3 logrn+5logrn+7logrn+9 logrn+11logrn+13logrn+15 \left| \begin{matrix} \log {{r}^{n-1}} & \log {{r}^{n+1}} & \log {{r}^{n+3}} \\\ \log {{r}^{n+5}} & \log {{r}^{n+7}} & \log {{r}^{n+9}} \\\ \log {{r}^{n+11}} & \log {{r}^{n+13}} & \log {{r}^{n+15}} \\\ \end{matrix} \right|
We know that property of logarithms that logam=mloga\log {{a}^{m}}=m\log a, so by using this property we can express the determinant as
Det = (n1)logr(n+1)logr(n+3)logr (n+5)logr(n+7)logr(n+9)logr (n+11)logr(n+13)logr(n+15)logr \left| \begin{matrix} \left( n-1 \right)\log r & \left( n+1 \right)\log r & \left( n+3 \right)\log r \\\ \left( n+5 \right)\log r & \left( n+7 \right)\log r & \left( n+9 \right)\log r \\\ \left( n+11 \right)\log r & \left( n+13 \right)\log r & \left( n+15 \right)\log r \\\ \end{matrix} \right|
We can now take the term logr\log r as common from each column. Hence, we get
Det = (logr)3(n1)(n+1)(n+3) (n+5)(n+7)(n+9) (n+11)(n+13)(n+15) {{\left( \log r \right)}^{3}}\left| \begin{matrix} \left( n-1 \right) & \left( n+1 \right) & \left( n+3 \right) \\\ \left( n+5 \right) & \left( n+7 \right) & \left( n+9 \right) \\\ \left( n+11 \right) & \left( n+13 \right) & \left( n+15 \right) \\\ \end{matrix} \right|
We know that we can perform arithmetic operations on rows or columns, without affecting the value of the determinant.
To simplify this determinant, let us perform the following operation C3=C3C2{{C}_{3}}={{C}_{3}}-{{C}_{2}}.
We now get
Det = (logr)3(n1)(n+1)2 (n+5)(n+7)2 (n+11)(n+13)2 {{\left( \log r \right)}^{3}}\left| \begin{matrix} \left( n-1 \right) & \left( n+1 \right) & 2 \\\ \left( n+5 \right) & \left( n+7 \right) & 2 \\\ \left( n+11 \right) & \left( n+13 \right) & 2 \\\ \end{matrix} \right|
Let us now perform the operation C2=C2C1{{C}_{2}}={{C}_{2}}-{{C}_{1}}.
We will get the following determinant,
Det = (logr)3(n1)22 (n+5)22 (n+11)22 {{\left( \log r \right)}^{3}}\left| \begin{matrix} \left( n-1 \right) & 2 & 2 \\\ \left( n+5 \right) & 2 & 2 \\\ \left( n+11 \right) & 2 & 2 \\\ \end{matrix} \right|
We know by the property of determinants that if the values in two determinants are exactly the same, then the value of the determinant is zero.
Hence, we have

\left( n-1 \right) & 2 & 2 \\\ \left( n+5 \right) & 2 & 2 \\\ \left( n+11 \right) & 2 & 2 \\\ \end{matrix} \right|=0$$ Thus, we get Det = ${{\left( \log r \right)}^{3}}\times 0$ And so, the value of this determinant is Det = 0. **So, the correct answer is “Option a”.** **Note:** This determinant involves complex terms. So, we must be careful while handling these terms. We can also solve this problem by using the fact that if a, b, c are in G.P. then the terms log a, log b, log c will be in arithmetic progression (A.P.)