Solveeit Logo

Question

Mathematics Question on Sequence and series

If a1,a2,......an+1a_1, a_2,...... a_{n+1} are in A.P. then 1a1a2+1a2a3+.......+1anan+1\frac{1}{a_{1}a_{2}}+\frac{1}{a_{2}a_{3}}+.......+\frac{1}{a_{n}a_{n+1}} is

A

n1a1an+1\frac{n-1}{a_{1}a_{n+1}}

B

1a1an+1\frac{1}{a_{1}a_{n+1}}

C

n+1a1an+1\frac{n+1}{a_{1}a_{n+1}}

D

na1an+1\frac{n}{a_{1}a_{n+1}}

Answer

na1an+1\frac{n}{a_{1}a_{n+1}}

Explanation

Solution

a1,a2,a3,.........,an+1a_1, a_2, a_3, ........., a_{n+1} are in A.P. and common difference =d= d Let S=1a1a2+1a2a3+.......+1anan+1S=\frac{1}{a_{1}a_{2}}+\frac{1}{a_{2}a_{3}}+.......+\frac{1}{a_{n}a_{n+1}} \Rightarrow S=\frac{1}{d}\left\\{\frac{d}{a_{1}a_{2}}+\frac{d}{a_{2}a_{3}}+.......+\frac{d}{a_{n}a_{n+1}}\right\\} \Rightarrow S=\frac{1}{d}\left\\{\frac{a_{2}-a_{1}}{a_{1}a_{2}}+\frac{a_{3}-a_{2}}{a_{2}a_{3}}+......+\frac{a_{n+1}-a_{n}}{a_{n}a_{n+1}}\right\\} \Rightarrow S=\frac{1}{d}\left\\{\frac{1}{a_{1}}-\frac{1}{a_{n+1}}\right\\}=\frac{1}{d}\left\\{\frac{a_{n+1}-a_{1}}{a_{1}a_{n+1}}\right\\} \Rightarrow S=\frac{1}{d}\left\\{\frac{nd}{a_{1}a_{n+1}}\right\\}=\frac{n}{a_{1}a_{n+1}}