Solveeit Logo

Question

Mathematics Question on Sequence and series

If a1,a2,a3,............a_1,a_2,a_3,............ is an A.P. such that a1+a5+a10+a15+a20+a24=225,a_1+a_5+a_{10}+a_{15}+a_{20}+a_{24}=225, then a1+a2+a3+.....+a23+a24a_1+a_2+a_3+.....+a_{23}+a_{24} is equal to

A

909

B

75

C

750

D

900

Answer

900

Explanation

Solution

We have a1+a5+a10+a15+a20+a24=225a_{1}+a_{5}+a_{10}+a_{15}+a_{20}+a_{24} =225 (a1+a24)+(a5+a20)+(a10+a15)=225\therefore\left(a_{1}+a_{24}\right)+\left(a_{5}+a_{20}\right) +\left(a_{10}+a_{15}\right) = 225 (a+a+23d)+(a+4d+a+19d)\therefore \left(a+a+23d\right)+\left(a+4d+a+19d\right) +(a+9d+a+14d)=225+\left(a+9d+a+14d\right)= 225 i.e., 3(2a+23d)=2253\left(2a+23d\right)= 225 2a+23d=75 \Rightarrow 2a+23d = 75 Again a1+a2+.....+a24a_{1}+a_{2} +.....+a_{24} =242(a1+a24)=12(a+a+23d)= \frac{24}{2}\left(a_{1}+a_{24}\right) = 12\left(a+a+23d\right) =12(2a+23d) =12\left(2a+23d\right) =12(75) = 12\left(75\right) =900 = 900