Question
Question: If \({{a}_{1}}\) , \({{a}_{2}}\) , \({{a}_{3}}\) , \({{b}_{1}}\) , \({{b}_{2}}\) , \({{b}_{3}}\) \(\...
If a1 , a2 , a3 , b1 , b2 , b3 ∈ R and are such that aibj=0 for 1 ≤ i,j ≤ 3, then
1−a1b11−a13b13 1−a2b11−a23b13 1−a3b11−a33b13 1−a1b21−a13b231−a2b21−a23b231−a3b21−a33b231−a1b31−a13b331−a2b31−a23b331−a3b31−a33b33 > 0 Provided either a1 < a2 < a3 and b1 < b2 < b3 or a1 > a2 a3 and b1>b2>b3 then show that (a1−a2)(a2−a3)(a3−a1)(b1−b2)(b2−b3)(b3−b1)<0
Solution
We know that a−ba3−b3 is equal to a2+b2+ab where a is not equal to b. it is given that aibj=0 for 1 ≤ i,j ≤ 3 so we can write 1−a1b11−a13b13=1+a12b12+a1b1 . Then we can see the matrix is a product of 2 matrices. We can find the 2 matrices and find their determinant to solve the equation.
Complete step by step solution:
The given determinant is 1−a1b11−a13b13 1−a2b11−a23b13 1−a3b11−a33b13 1−a1b21−a13b231−a2b21−a23b231−a3b21−a33b231−a1b31−a13b331−a2b31−a23b331−a3b31−a33b33
We know that a−ba3−b3 is equal to a2+b2+ab where a is not equal to b
So we can write 1−a1b11−a13b13 1−a2b11−a23b13 1−a3b11−a33b13 1−a1b21−a13b231−a2b21−a23b231−a3b21−a33b231−a1b31−a13b331−a2b31−a23b331−a3b31−a33b33 as 1+a1b1+a12b12 1+a2b1+a22b12 1+a3b1+a32b12 1+a1b2+a12b221+a2b2+a22b221+a3b2+a32b221+a1b3+a12b321+a2b3+a22b321+a3b3+a32b32
If we observe we can see the above matrix is the product of 2 matrix.
We can write
⇒1+a1b1+a12b12 1+a2b1+a22b12 1+a3b1+a32b12 1+a1b2+a12b221+a2b2+a22b221+a3b2+a32b221+a1b3+a12b321+a2b3+a22b321+a3b3+a32b32=1 1 1 a1a2a3a12a22a321 b1 b12 1b2b221b3b32
Now we can perform row and column operation
⇒1+a1b1+a12b12 1+a2b1+a22b12 1+a3b1+a32b12 1+a1b2+a12b221+a2b2+a22b221+a3b2+a32b221+a1b3+a12b321+a2b3+a22b321+a3b3+a32b32=1 0 0 a1a2−a1a3−a1a12a22−a12a32−a121 b1 b12 0b2−b1b22−b120b3−b1b32−b12
Now evaluating the determinant, we get
⇒1+a1b1+a12b12 1+a2b1+a22b12 1+a3b1+a32b12 1+a1b2+a12b221+a2b2+a22b221+a3b2+a32b221+a1b3+a12b321+a2b3+a22b321+a3b3+a32b32=[(a2−a1)(a32−a12)−(a3−a1)(a22−a12)][(b2−b1)(b32−b12)−(b3−b1)(b22−b12)]
Further solving it we get
⇒1+a1b1+a12b12 1+a2b1+a22b12 1+a3b1+a32b12 1+a1b2+a12b221+a2b2+a22b221+a3b2+a32b221+a1b3+a12b321+a2b3+a22b321+a3b3+a32b32=(a2−a1)(a3−a2)(a3−a1)(b2−b1)(b3−b1)(b3−b2)
⇒1+a1b1+a12b12 1+a2b1+a22b12 1+a3b1+a32b12 1+a1b2+a12b221+a2b2+a22b221+a3b2+a32b221+a1b3+a12b321+a2b3+a22b321+a3b3+a32b32=(a1−a2)(a2−a3)(a3−a1)(b1−b2)(b2−b3)(b3−b1)so if 1−a1b11−a13b13 1−a2b11−a23b13 1−a3b11−a33b13 1−a1b21−a13b231−a2b21−a23b231−a3b21−a33b231−a1b31−a13b331−a2b31−a23b331−a3b31−a33b33 > 0 then (a1−a2)(a2−a3)(a3−a1)(b1−b2)(b2−b3)(b3−b1) > 0
Note: If product of matrix A and B is equal to matrix c, then product of determinant of A and B is equal to determinant of C. The determinant of matrix A is equal to determinant of transpose of A. If the determinant of A is equal to 0, Then we can not find the inverse of the matrix A. The determinant of the inverse of matrix A is equal to the reciprocal of determinant of matrix A.