Question
Mathematics Question on Sequence and series
If a1,a2,a3,... are in harmonic progression with a1=5 and a20=25. Then, the least positive integer n for which an<0, is
A
22
B
23
C
24
D
25
Answer
25
Explanation
Solution
PLAN nth term of HP, tn=a+(n−1)n1
Here, \hspace20mm a_1 = 5, a_{20} = 25 for HP
\therefore \hspace20mm \frac{1}{a}= 5, and a+19d1=25
\Rightarrow \hspace20mm \frac{1}{5} = 19d =\frac{1}{25} \Rightarrow \, \, \, 19d = \frac{1}{25} - \frac{1}{5} = -\frac{4}{25}
\therefore \hspace20mm d =\frac{-4}{19 \times 25}
Since, \hspace15mm a_n < 0
\Rightarrow \hspace10mm \frac{1}{5}+ (n-1) d < 0
⇒51−19×25−4(n−1)<0⇒(n−1)>495
\Rightarrow \hspace30mm n > 1 + \frac{95}{4} or n>24.75
∴ Least positive value of n = 25