Solveeit Logo

Question

Mathematics Question on Sequence and series

If a1,a2,a3,...a_1, a_2, a_3,... are in harmonic progression with a1=5a_1 = 5 and a20=25. a_{20} = 25. Then, the least positive integer nn for which an<0,a_n < 0, is

A

22

B

23

C

24

D

25

Answer

25

Explanation

Solution

PLAN nth term of HP, tn=1a+(n1)nt_n = \frac{1}{a+(n-1)n}
Here, \hspace20mm a_1 = 5, a_{20} = 25 for HP
\therefore \hspace20mm \frac{1}{a}= 5, and 1a+19d=25\frac{1}{a+19d} =25
\Rightarrow \hspace20mm \frac{1}{5} = 19d =\frac{1}{25} \Rightarrow \, \, \, 19d = \frac{1}{25} - \frac{1}{5} = -\frac{4}{25}
\therefore \hspace20mm d =\frac{-4}{19 \times 25}
Since, \hspace15mm a_n < 0
\Rightarrow \hspace10mm \frac{1}{5}+ (n-1) d < 0
15419×25(n1)<0(n1)>954\Rightarrow \frac{1}{5} - \frac{-4}{19 \times 25} (n-1) < 0 \, \, \Rightarrow (n-1) > \frac{95}{4}
\Rightarrow \hspace30mm n > 1 + \frac{95}{4} or n>24.75 n > 24.75
\therefore Least positive value of n = 25