Solveeit Logo

Question

Question: If \[{{a}_{1}},{{a}_{2}},{{a}_{3}},...\] ​ are in A.P with \[{{a}_{1}}+{{a}_{7}}+{{a}_{16}}=40\]. Th...

If a1,a2,a3,...{{a}_{1}},{{a}_{2}},{{a}_{3}},... ​ are in A.P with a1+a7+a16=40{{a}_{1}}+{{a}_{7}}+{{a}_{16}}=40. Then find the sum of the first 15 terms of the given A.P.
(a) 200
(b) 280
(c) 120
(d) 150

Explanation

Solution

In this question, We are given that a1,a2,a3,...{{a}_{1}},{{a}_{2}},{{a}_{3}},... ​ are in A.P with a1+a7+a16=40{{a}_{1}}+{{a}_{7}}+{{a}_{16}}=40. Then there will be a common difference, say dd between the consecutive terms of the A.P. Now the formulate to calculate the nth{{n}^{th}} terms of an A.P denotes by an{{a}_{n}} is given by
an=a1+(n1)d{{a}_{n}}={{a}_{1}}+\left( n-1 \right)d. Also the sum of first nn terms say a1,a2,a3,...,an{{a}_{1}},{{a}_{2}},{{a}_{3}},...,{{a}_{n}} is given by n2(a1+an)\dfrac{n}{2}\left( {{a}_{1}}+{{a}_{n}} \right). We will be using these formulas to calculate the sum of the first 15 terms of the given A.P.

Complete step by step answer:
We are given that a1,a2,a3,...{{a}_{1}},{{a}_{2}},{{a}_{3}},... ​ are in A.P.
Also we are given that a1+a7+a16=40{{a}_{1}}+{{a}_{7}}+{{a}_{16}}=40.
Now since a1,a2,a3,...{{a}_{1}},{{a}_{2}},{{a}_{3}},... ​ are in A.P there will be a common difference say dd between the consecutive terms of the A.P and the formulate to calculate the nth{{n}^{th}} terms of an A.P denotes by an{{a}_{n}} is given by an=a1+(n1)d{{a}_{n}}={{a}_{1}}+\left( n-1 \right)d .
Thus on substituting n=1n=1 in an=a1+(n1)d{{a}_{n}}={{a}_{1}}+\left( n-1 \right)d, we will have

& {{a}_{1}}={{a}_{1}}+\left( 1-1 \right)d \\\ & ={{a}_{1}} \end{aligned}$$ Now on substituting $$n=7$$ in $${{a}_{n}}={{a}_{1}}+\left( n-1 \right)d$$, we will have $$\begin{aligned} & {{a}_{7}}={{a}_{1}}+\left( 7-1 \right)d \\\ & ={{a}_{1}}+6d..........(1) \end{aligned}$$ Again on substituting $$n=16$$ in $${{a}_{n}}={{a}_{1}}+\left( n-1 \right)d$$, we will have $$\begin{aligned} & {{a}_{16}}={{a}_{1}}+\left( 16-1 \right)d \\\ & ={{a}_{1}}+15d.............(2) \end{aligned}$$ Now on substituting the values of equation (1) and equation (2) in the equation $${{a}_{1}}+{{a}_{7}}+{{a}_{16}}=40$$, we will have $${{a}_{1}}+\left( {{a}_{1}}+6d \right)+\left( {{a}_{1}}+15d \right)=40$$ On adding the common terms , we get $$3{{a}_{1}}+21d=40$$ Now by dividing the above expression by 3, we get $${{a}_{1}}+7d=\dfrac{40}{3}.............(3)$$ Since we know that the sum of first $$n$$ terms say $${{a}_{1}},{{a}_{2}},{{a}_{3}},...,{{a}_{n}}$$ of an A.P is given by $$\dfrac{n}{2}\left( {{a}_{1}}+{{a}_{n}} \right)$$. Therefore the sum of first 15 terms of the given A.P, that is the sum of $${{a}_{1}},{{a}_{2}},{{a}_{3}},...,{{a}_{15}}$$ is given by $${{a}_{1}}+{{a}_{2}}+{{a}_{3}}+...+{{a}_{n}}=\dfrac{15}{2}\left( {{a}_{1}}+{{a}_{15}} \right)$$ Now on substituting $$n=15$$ in $${{a}_{n}}={{a}_{1}}+\left( n-1 \right)d$$, we will have $$\begin{aligned} & {{a}_{15}}={{a}_{1}}+\left( 15-1 \right)d \\\ & ={{a}_{1}}+14d..........(4) \end{aligned}$$ On substituting the value of equation (4) in the equation $${{a}_{1}}+{{a}_{2}}+{{a}_{3}}+...+{{a}_{n}}=\dfrac{n}{2}\left( {{a}_{1}}+{{a}_{15}} \right)$$, we will have $$\begin{aligned} & {{a}_{1}}+{{a}_{2}}+{{a}_{3}}+...+{{a}_{n}}=\dfrac{15}{2}\left( {{a}_{1}}+{{a}_{1}}+14 \right) \\\ & =\dfrac{15}{2}\left( 2{{a}_{1}}+14 \right) \\\ & =\dfrac{15}{2}\times 2\left( {{a}_{1}}+7 \right) \\\ & =15\left( {{a}_{1}}+7 \right) \end{aligned}$$ Now on substituting the value of equation (3) in the above expression, we will have $$\begin{aligned} & {{a}_{1}}+{{a}_{2}}+{{a}_{3}}+...+{{a}_{n}}=15\left( \dfrac{40}{3} \right) \\\ & =5\times 40 \\\ & =200 \end{aligned}$$ Therefore the sum of the first 15 terms of the given A.P is equal to 200. **So, the correct answer is “Option A”.** **Note:** In this problem, we have to carefully use the formulas for the sum of first $$n$$ terms of an A.P and to find the $${{n}^{th}}$$ terms of an A.P in proper order. That is the formulate to calculate the $${{n}^{th}}$$ terms of an A.P denotes by $${{a}_{n}}$$ is given by $${{a}_{n}}={{a}_{1}}+\left( n-1 \right)d$$. Also the sum of first $$n$$ terms say $${{a}_{1}},{{a}_{2}},{{a}_{3}},...,{{a}_{n}}$$ is given by $$\dfrac{n}{2}\left( {{a}_{1}}+{{a}_{n}} \right)$$.