Solveeit Logo

Question

Mathematics Question on Sequence and series

If a1,a2,a3a_1, a_2, a_3 ….. and b1,b2,b3b_1, b_2, b_3 ….. are A.P., and a1=2,a10=3,a1b1=1=a10b10a_1 = 2, a_{10} = 3, a_1b_1 = 1 = a_{10}b_{10}, then a4b4a_4b_4 is equal to

A

3527\frac{35}{27}

B

1

C

2728\frac{27}{28}

D

2827\frac{28}{27}

Answer

2827\frac{28}{27}

Explanation

Solution

a1,a2,a3a_1, a_2, a_3 … are in A.P. (Let common difference is d1d_1)

b1,b2,b3b_1, b_2, b_3 … are in A.P. (Let common difference is d2d_2) and a1a_1 = 22, a10=3,a1b1=1=a10b10a_{10} = 3, a_1b_1 = 1 = a_{10}b_{10}

a1b1=1a_1b_1 = 1

b1=12∴b1=\frac{1}{2}

a10b10=1a_{10}b_{10}= 1

b10=13∴b_{10}=\frac{1}{3}

Now, a10=a1+9d1a_{10}=a_1+9d_1

d1=19⇒d_1=\frac{1}{9}

b10=b1+9d2b_{10}=b_1+9d_2

d2=19[1312]⇒d_2=\frac{1}{9}[\frac{1}{3}−\frac{1}{2}]

=154−\frac{1}{54}

Now, a4=2+39=73a_4=2+\frac{3}{9}=\frac{7}{3}

b4=12354=49b_4=\frac{1}{2}–\frac{3}{54}=\frac{4}{9}

  a4b4=2827∴ \;a_4b_4=\frac{28}{27}